Step |
Hyp |
Ref |
Expression |
1 |
|
toycom.1 |
|- C = { g e. Abel | ( Base ` g ) = CC } |
2 |
|
toycom.2 |
|- .+ = ( +g ` K ) |
3 |
|
ssrab2 |
|- { g e. Abel | ( Base ` g ) = CC } C_ Abel |
4 |
1 3
|
eqsstri |
|- C C_ Abel |
5 |
4
|
sseli |
|- ( K e. C -> K e. Abel ) |
6 |
5
|
3ad2ant1 |
|- ( ( K e. C /\ A e. CC /\ B e. CC ) -> K e. Abel ) |
7 |
|
simp2 |
|- ( ( K e. C /\ A e. CC /\ B e. CC ) -> A e. CC ) |
8 |
|
fveq2 |
|- ( g = K -> ( Base ` g ) = ( Base ` K ) ) |
9 |
8
|
eqeq1d |
|- ( g = K -> ( ( Base ` g ) = CC <-> ( Base ` K ) = CC ) ) |
10 |
9 1
|
elrab2 |
|- ( K e. C <-> ( K e. Abel /\ ( Base ` K ) = CC ) ) |
11 |
10
|
simprbi |
|- ( K e. C -> ( Base ` K ) = CC ) |
12 |
11
|
3ad2ant1 |
|- ( ( K e. C /\ A e. CC /\ B e. CC ) -> ( Base ` K ) = CC ) |
13 |
7 12
|
eleqtrrd |
|- ( ( K e. C /\ A e. CC /\ B e. CC ) -> A e. ( Base ` K ) ) |
14 |
|
simp3 |
|- ( ( K e. C /\ A e. CC /\ B e. CC ) -> B e. CC ) |
15 |
14 12
|
eleqtrrd |
|- ( ( K e. C /\ A e. CC /\ B e. CC ) -> B e. ( Base ` K ) ) |
16 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
17 |
|
eqid |
|- ( +g ` K ) = ( +g ` K ) |
18 |
16 17
|
ablcom |
|- ( ( K e. Abel /\ A e. ( Base ` K ) /\ B e. ( Base ` K ) ) -> ( A ( +g ` K ) B ) = ( B ( +g ` K ) A ) ) |
19 |
6 13 15 18
|
syl3anc |
|- ( ( K e. C /\ A e. CC /\ B e. CC ) -> ( A ( +g ` K ) B ) = ( B ( +g ` K ) A ) ) |
20 |
2
|
oveqi |
|- ( A .+ B ) = ( A ( +g ` K ) B ) |
21 |
2
|
oveqi |
|- ( B .+ A ) = ( B ( +g ` K ) A ) |
22 |
19 20 21
|
3eqtr4g |
|- ( ( K e. C /\ A e. CC /\ B e. CC ) -> ( A .+ B ) = ( B .+ A ) ) |