| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dgrub.1 |
|- A = ( coeff ` F ) |
| 2 |
|
dgrub.2 |
|- N = ( deg ` F ) |
| 3 |
1 2
|
coeid2 |
|- ( ( F e. ( Poly ` S ) /\ X e. CC ) -> ( F ` X ) = sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( X ^ k ) ) ) |
| 4 |
3
|
3adant2 |
|- ( ( F e. ( Poly ` S ) /\ M e. ( ZZ>= ` N ) /\ X e. CC ) -> ( F ` X ) = sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( X ^ k ) ) ) |
| 5 |
|
fzss2 |
|- ( M e. ( ZZ>= ` N ) -> ( 0 ... N ) C_ ( 0 ... M ) ) |
| 6 |
5
|
3ad2ant2 |
|- ( ( F e. ( Poly ` S ) /\ M e. ( ZZ>= ` N ) /\ X e. CC ) -> ( 0 ... N ) C_ ( 0 ... M ) ) |
| 7 |
|
elfznn0 |
|- ( k e. ( 0 ... N ) -> k e. NN0 ) |
| 8 |
1
|
coef3 |
|- ( F e. ( Poly ` S ) -> A : NN0 --> CC ) |
| 9 |
8
|
3ad2ant1 |
|- ( ( F e. ( Poly ` S ) /\ M e. ( ZZ>= ` N ) /\ X e. CC ) -> A : NN0 --> CC ) |
| 10 |
9
|
ffvelcdmda |
|- ( ( ( F e. ( Poly ` S ) /\ M e. ( ZZ>= ` N ) /\ X e. CC ) /\ k e. NN0 ) -> ( A ` k ) e. CC ) |
| 11 |
|
expcl |
|- ( ( X e. CC /\ k e. NN0 ) -> ( X ^ k ) e. CC ) |
| 12 |
11
|
3ad2antl3 |
|- ( ( ( F e. ( Poly ` S ) /\ M e. ( ZZ>= ` N ) /\ X e. CC ) /\ k e. NN0 ) -> ( X ^ k ) e. CC ) |
| 13 |
10 12
|
mulcld |
|- ( ( ( F e. ( Poly ` S ) /\ M e. ( ZZ>= ` N ) /\ X e. CC ) /\ k e. NN0 ) -> ( ( A ` k ) x. ( X ^ k ) ) e. CC ) |
| 14 |
7 13
|
sylan2 |
|- ( ( ( F e. ( Poly ` S ) /\ M e. ( ZZ>= ` N ) /\ X e. CC ) /\ k e. ( 0 ... N ) ) -> ( ( A ` k ) x. ( X ^ k ) ) e. CC ) |
| 15 |
|
eldifn |
|- ( k e. ( ( 0 ... M ) \ ( 0 ... N ) ) -> -. k e. ( 0 ... N ) ) |
| 16 |
15
|
adantl |
|- ( ( ( F e. ( Poly ` S ) /\ M e. ( ZZ>= ` N ) /\ X e. CC ) /\ k e. ( ( 0 ... M ) \ ( 0 ... N ) ) ) -> -. k e. ( 0 ... N ) ) |
| 17 |
|
simpl1 |
|- ( ( ( F e. ( Poly ` S ) /\ M e. ( ZZ>= ` N ) /\ X e. CC ) /\ k e. ( ( 0 ... M ) \ ( 0 ... N ) ) ) -> F e. ( Poly ` S ) ) |
| 18 |
|
eldifi |
|- ( k e. ( ( 0 ... M ) \ ( 0 ... N ) ) -> k e. ( 0 ... M ) ) |
| 19 |
|
elfzuz |
|- ( k e. ( 0 ... M ) -> k e. ( ZZ>= ` 0 ) ) |
| 20 |
18 19
|
syl |
|- ( k e. ( ( 0 ... M ) \ ( 0 ... N ) ) -> k e. ( ZZ>= ` 0 ) ) |
| 21 |
20
|
adantl |
|- ( ( ( F e. ( Poly ` S ) /\ M e. ( ZZ>= ` N ) /\ X e. CC ) /\ k e. ( ( 0 ... M ) \ ( 0 ... N ) ) ) -> k e. ( ZZ>= ` 0 ) ) |
| 22 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 23 |
21 22
|
eleqtrrdi |
|- ( ( ( F e. ( Poly ` S ) /\ M e. ( ZZ>= ` N ) /\ X e. CC ) /\ k e. ( ( 0 ... M ) \ ( 0 ... N ) ) ) -> k e. NN0 ) |
| 24 |
1 2
|
dgrub |
|- ( ( F e. ( Poly ` S ) /\ k e. NN0 /\ ( A ` k ) =/= 0 ) -> k <_ N ) |
| 25 |
24
|
3expia |
|- ( ( F e. ( Poly ` S ) /\ k e. NN0 ) -> ( ( A ` k ) =/= 0 -> k <_ N ) ) |
| 26 |
17 23 25
|
syl2anc |
|- ( ( ( F e. ( Poly ` S ) /\ M e. ( ZZ>= ` N ) /\ X e. CC ) /\ k e. ( ( 0 ... M ) \ ( 0 ... N ) ) ) -> ( ( A ` k ) =/= 0 -> k <_ N ) ) |
| 27 |
|
simpl2 |
|- ( ( ( F e. ( Poly ` S ) /\ M e. ( ZZ>= ` N ) /\ X e. CC ) /\ k e. ( ( 0 ... M ) \ ( 0 ... N ) ) ) -> M e. ( ZZ>= ` N ) ) |
| 28 |
|
eluzel2 |
|- ( M e. ( ZZ>= ` N ) -> N e. ZZ ) |
| 29 |
27 28
|
syl |
|- ( ( ( F e. ( Poly ` S ) /\ M e. ( ZZ>= ` N ) /\ X e. CC ) /\ k e. ( ( 0 ... M ) \ ( 0 ... N ) ) ) -> N e. ZZ ) |
| 30 |
|
elfz5 |
|- ( ( k e. ( ZZ>= ` 0 ) /\ N e. ZZ ) -> ( k e. ( 0 ... N ) <-> k <_ N ) ) |
| 31 |
21 29 30
|
syl2anc |
|- ( ( ( F e. ( Poly ` S ) /\ M e. ( ZZ>= ` N ) /\ X e. CC ) /\ k e. ( ( 0 ... M ) \ ( 0 ... N ) ) ) -> ( k e. ( 0 ... N ) <-> k <_ N ) ) |
| 32 |
26 31
|
sylibrd |
|- ( ( ( F e. ( Poly ` S ) /\ M e. ( ZZ>= ` N ) /\ X e. CC ) /\ k e. ( ( 0 ... M ) \ ( 0 ... N ) ) ) -> ( ( A ` k ) =/= 0 -> k e. ( 0 ... N ) ) ) |
| 33 |
32
|
necon1bd |
|- ( ( ( F e. ( Poly ` S ) /\ M e. ( ZZ>= ` N ) /\ X e. CC ) /\ k e. ( ( 0 ... M ) \ ( 0 ... N ) ) ) -> ( -. k e. ( 0 ... N ) -> ( A ` k ) = 0 ) ) |
| 34 |
16 33
|
mpd |
|- ( ( ( F e. ( Poly ` S ) /\ M e. ( ZZ>= ` N ) /\ X e. CC ) /\ k e. ( ( 0 ... M ) \ ( 0 ... N ) ) ) -> ( A ` k ) = 0 ) |
| 35 |
34
|
oveq1d |
|- ( ( ( F e. ( Poly ` S ) /\ M e. ( ZZ>= ` N ) /\ X e. CC ) /\ k e. ( ( 0 ... M ) \ ( 0 ... N ) ) ) -> ( ( A ` k ) x. ( X ^ k ) ) = ( 0 x. ( X ^ k ) ) ) |
| 36 |
|
elfznn0 |
|- ( k e. ( 0 ... M ) -> k e. NN0 ) |
| 37 |
18 36
|
syl |
|- ( k e. ( ( 0 ... M ) \ ( 0 ... N ) ) -> k e. NN0 ) |
| 38 |
37 12
|
sylan2 |
|- ( ( ( F e. ( Poly ` S ) /\ M e. ( ZZ>= ` N ) /\ X e. CC ) /\ k e. ( ( 0 ... M ) \ ( 0 ... N ) ) ) -> ( X ^ k ) e. CC ) |
| 39 |
38
|
mul02d |
|- ( ( ( F e. ( Poly ` S ) /\ M e. ( ZZ>= ` N ) /\ X e. CC ) /\ k e. ( ( 0 ... M ) \ ( 0 ... N ) ) ) -> ( 0 x. ( X ^ k ) ) = 0 ) |
| 40 |
35 39
|
eqtrd |
|- ( ( ( F e. ( Poly ` S ) /\ M e. ( ZZ>= ` N ) /\ X e. CC ) /\ k e. ( ( 0 ... M ) \ ( 0 ... N ) ) ) -> ( ( A ` k ) x. ( X ^ k ) ) = 0 ) |
| 41 |
|
fzfid |
|- ( ( F e. ( Poly ` S ) /\ M e. ( ZZ>= ` N ) /\ X e. CC ) -> ( 0 ... M ) e. Fin ) |
| 42 |
6 14 40 41
|
fsumss |
|- ( ( F e. ( Poly ` S ) /\ M e. ( ZZ>= ` N ) /\ X e. CC ) -> sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( X ^ k ) ) = sum_ k e. ( 0 ... M ) ( ( A ` k ) x. ( X ^ k ) ) ) |
| 43 |
4 42
|
eqtrd |
|- ( ( F e. ( Poly ` S ) /\ M e. ( ZZ>= ` N ) /\ X e. CC ) -> ( F ` X ) = sum_ k e. ( 0 ... M ) ( ( A ` k ) x. ( X ^ k ) ) ) |