| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpr |  |-  ( ( W e. Word V /\ U e. Word V ) -> U e. Word V ) | 
						
							| 2 | 1 | adantr |  |-  ( ( ( W e. Word V /\ U e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) -> U e. Word V ) | 
						
							| 3 |  | zsubcl |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M - N ) e. ZZ ) | 
						
							| 4 | 3 | ancoms |  |-  ( ( N e. ZZ /\ M e. ZZ ) -> ( M - N ) e. ZZ ) | 
						
							| 5 | 4 | adantl |  |-  ( ( ( W e. Word V /\ U e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) -> ( M - N ) e. ZZ ) | 
						
							| 6 |  | simpr |  |-  ( ( N e. ZZ /\ M e. ZZ ) -> M e. ZZ ) | 
						
							| 7 | 6 | adantl |  |-  ( ( ( W e. Word V /\ U e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) -> M e. ZZ ) | 
						
							| 8 | 2 5 7 | 3jca |  |-  ( ( ( W e. Word V /\ U e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) -> ( U e. Word V /\ ( M - N ) e. ZZ /\ M e. ZZ ) ) | 
						
							| 9 | 8 | adantr |  |-  ( ( ( ( W e. Word V /\ U e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) /\ ( W cyclShift N ) = ( U cyclShift M ) ) -> ( U e. Word V /\ ( M - N ) e. ZZ /\ M e. ZZ ) ) | 
						
							| 10 |  | 3cshw |  |-  ( ( U e. Word V /\ ( M - N ) e. ZZ /\ M e. ZZ ) -> ( U cyclShift ( M - N ) ) = ( ( ( U cyclShift M ) cyclShift ( M - N ) ) cyclShift ( ( # ` U ) - M ) ) ) | 
						
							| 11 | 9 10 | syl |  |-  ( ( ( ( W e. Word V /\ U e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) /\ ( W cyclShift N ) = ( U cyclShift M ) ) -> ( U cyclShift ( M - N ) ) = ( ( ( U cyclShift M ) cyclShift ( M - N ) ) cyclShift ( ( # ` U ) - M ) ) ) | 
						
							| 12 |  | simpl |  |-  ( ( ( W e. Word V /\ U e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) -> ( W e. Word V /\ U e. Word V ) ) | 
						
							| 13 | 12 | ancomd |  |-  ( ( ( W e. Word V /\ U e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) -> ( U e. Word V /\ W e. Word V ) ) | 
						
							| 14 | 13 | adantr |  |-  ( ( ( ( W e. Word V /\ U e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) /\ ( W cyclShift N ) = ( U cyclShift M ) ) -> ( U e. Word V /\ W e. Word V ) ) | 
						
							| 15 |  | simpr |  |-  ( ( ( W e. Word V /\ U e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) -> ( N e. ZZ /\ M e. ZZ ) ) | 
						
							| 16 | 15 | ancomd |  |-  ( ( ( W e. Word V /\ U e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) -> ( M e. ZZ /\ N e. ZZ ) ) | 
						
							| 17 | 16 | adantr |  |-  ( ( ( ( W e. Word V /\ U e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) /\ ( W cyclShift N ) = ( U cyclShift M ) ) -> ( M e. ZZ /\ N e. ZZ ) ) | 
						
							| 18 |  | simpr |  |-  ( ( ( ( W e. Word V /\ U e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) /\ ( W cyclShift N ) = ( U cyclShift M ) ) -> ( W cyclShift N ) = ( U cyclShift M ) ) | 
						
							| 19 | 18 | eqcomd |  |-  ( ( ( ( W e. Word V /\ U e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) /\ ( W cyclShift N ) = ( U cyclShift M ) ) -> ( U cyclShift M ) = ( W cyclShift N ) ) | 
						
							| 20 |  | cshwleneq |  |-  ( ( ( U e. Word V /\ W e. Word V ) /\ ( M e. ZZ /\ N e. ZZ ) /\ ( U cyclShift M ) = ( W cyclShift N ) ) -> ( # ` U ) = ( # ` W ) ) | 
						
							| 21 | 14 17 19 20 | syl3anc |  |-  ( ( ( ( W e. Word V /\ U e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) /\ ( W cyclShift N ) = ( U cyclShift M ) ) -> ( # ` U ) = ( # ` W ) ) | 
						
							| 22 | 21 | oveq1d |  |-  ( ( ( ( W e. Word V /\ U e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) /\ ( W cyclShift N ) = ( U cyclShift M ) ) -> ( ( # ` U ) - M ) = ( ( # ` W ) - M ) ) | 
						
							| 23 | 22 | oveq2d |  |-  ( ( ( ( W e. Word V /\ U e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) /\ ( W cyclShift N ) = ( U cyclShift M ) ) -> ( ( ( U cyclShift M ) cyclShift ( M - N ) ) cyclShift ( ( # ` U ) - M ) ) = ( ( ( U cyclShift M ) cyclShift ( M - N ) ) cyclShift ( ( # ` W ) - M ) ) ) | 
						
							| 24 | 11 23 | eqtrd |  |-  ( ( ( ( W e. Word V /\ U e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) /\ ( W cyclShift N ) = ( U cyclShift M ) ) -> ( U cyclShift ( M - N ) ) = ( ( ( U cyclShift M ) cyclShift ( M - N ) ) cyclShift ( ( # ` W ) - M ) ) ) | 
						
							| 25 | 19 | oveq1d |  |-  ( ( ( ( W e. Word V /\ U e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) /\ ( W cyclShift N ) = ( U cyclShift M ) ) -> ( ( U cyclShift M ) cyclShift ( M - N ) ) = ( ( W cyclShift N ) cyclShift ( M - N ) ) ) | 
						
							| 26 |  | simpl |  |-  ( ( W e. Word V /\ U e. Word V ) -> W e. Word V ) | 
						
							| 27 | 26 | adantr |  |-  ( ( ( W e. Word V /\ U e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) -> W e. Word V ) | 
						
							| 28 |  | simpl |  |-  ( ( N e. ZZ /\ M e. ZZ ) -> N e. ZZ ) | 
						
							| 29 | 28 | adantl |  |-  ( ( ( W e. Word V /\ U e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) -> N e. ZZ ) | 
						
							| 30 | 27 29 5 | 3jca |  |-  ( ( ( W e. Word V /\ U e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) -> ( W e. Word V /\ N e. ZZ /\ ( M - N ) e. ZZ ) ) | 
						
							| 31 | 30 | adantr |  |-  ( ( ( ( W e. Word V /\ U e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) /\ ( W cyclShift N ) = ( U cyclShift M ) ) -> ( W e. Word V /\ N e. ZZ /\ ( M - N ) e. ZZ ) ) | 
						
							| 32 |  | 2cshw |  |-  ( ( W e. Word V /\ N e. ZZ /\ ( M - N ) e. ZZ ) -> ( ( W cyclShift N ) cyclShift ( M - N ) ) = ( W cyclShift ( N + ( M - N ) ) ) ) | 
						
							| 33 | 31 32 | syl |  |-  ( ( ( ( W e. Word V /\ U e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) /\ ( W cyclShift N ) = ( U cyclShift M ) ) -> ( ( W cyclShift N ) cyclShift ( M - N ) ) = ( W cyclShift ( N + ( M - N ) ) ) ) | 
						
							| 34 |  | zcn |  |-  ( N e. ZZ -> N e. CC ) | 
						
							| 35 |  | zcn |  |-  ( M e. ZZ -> M e. CC ) | 
						
							| 36 | 34 35 | anim12i |  |-  ( ( N e. ZZ /\ M e. ZZ ) -> ( N e. CC /\ M e. CC ) ) | 
						
							| 37 | 36 | adantl |  |-  ( ( ( W e. Word V /\ U e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) -> ( N e. CC /\ M e. CC ) ) | 
						
							| 38 | 37 | adantr |  |-  ( ( ( ( W e. Word V /\ U e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) /\ ( W cyclShift N ) = ( U cyclShift M ) ) -> ( N e. CC /\ M e. CC ) ) | 
						
							| 39 |  | pncan3 |  |-  ( ( N e. CC /\ M e. CC ) -> ( N + ( M - N ) ) = M ) | 
						
							| 40 | 38 39 | syl |  |-  ( ( ( ( W e. Word V /\ U e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) /\ ( W cyclShift N ) = ( U cyclShift M ) ) -> ( N + ( M - N ) ) = M ) | 
						
							| 41 | 40 | oveq2d |  |-  ( ( ( ( W e. Word V /\ U e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) /\ ( W cyclShift N ) = ( U cyclShift M ) ) -> ( W cyclShift ( N + ( M - N ) ) ) = ( W cyclShift M ) ) | 
						
							| 42 | 25 33 41 | 3eqtrd |  |-  ( ( ( ( W e. Word V /\ U e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) /\ ( W cyclShift N ) = ( U cyclShift M ) ) -> ( ( U cyclShift M ) cyclShift ( M - N ) ) = ( W cyclShift M ) ) | 
						
							| 43 | 42 | oveq1d |  |-  ( ( ( ( W e. Word V /\ U e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) /\ ( W cyclShift N ) = ( U cyclShift M ) ) -> ( ( ( U cyclShift M ) cyclShift ( M - N ) ) cyclShift ( ( # ` W ) - M ) ) = ( ( W cyclShift M ) cyclShift ( ( # ` W ) - M ) ) ) | 
						
							| 44 |  | lencl |  |-  ( W e. Word V -> ( # ` W ) e. NN0 ) | 
						
							| 45 | 44 | nn0zd |  |-  ( W e. Word V -> ( # ` W ) e. ZZ ) | 
						
							| 46 | 45 | adantr |  |-  ( ( W e. Word V /\ U e. Word V ) -> ( # ` W ) e. ZZ ) | 
						
							| 47 |  | zsubcl |  |-  ( ( ( # ` W ) e. ZZ /\ M e. ZZ ) -> ( ( # ` W ) - M ) e. ZZ ) | 
						
							| 48 | 46 6 47 | syl2an |  |-  ( ( ( W e. Word V /\ U e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) -> ( ( # ` W ) - M ) e. ZZ ) | 
						
							| 49 | 27 7 48 | 3jca |  |-  ( ( ( W e. Word V /\ U e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) -> ( W e. Word V /\ M e. ZZ /\ ( ( # ` W ) - M ) e. ZZ ) ) | 
						
							| 50 | 49 | adantr |  |-  ( ( ( ( W e. Word V /\ U e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) /\ ( W cyclShift N ) = ( U cyclShift M ) ) -> ( W e. Word V /\ M e. ZZ /\ ( ( # ` W ) - M ) e. ZZ ) ) | 
						
							| 51 |  | 2cshw |  |-  ( ( W e. Word V /\ M e. ZZ /\ ( ( # ` W ) - M ) e. ZZ ) -> ( ( W cyclShift M ) cyclShift ( ( # ` W ) - M ) ) = ( W cyclShift ( M + ( ( # ` W ) - M ) ) ) ) | 
						
							| 52 | 50 51 | syl |  |-  ( ( ( ( W e. Word V /\ U e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) /\ ( W cyclShift N ) = ( U cyclShift M ) ) -> ( ( W cyclShift M ) cyclShift ( ( # ` W ) - M ) ) = ( W cyclShift ( M + ( ( # ` W ) - M ) ) ) ) | 
						
							| 53 | 24 43 52 | 3eqtrd |  |-  ( ( ( ( W e. Word V /\ U e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) /\ ( W cyclShift N ) = ( U cyclShift M ) ) -> ( U cyclShift ( M - N ) ) = ( W cyclShift ( M + ( ( # ` W ) - M ) ) ) ) | 
						
							| 54 | 44 | nn0cnd |  |-  ( W e. Word V -> ( # ` W ) e. CC ) | 
						
							| 55 | 54 | adantr |  |-  ( ( W e. Word V /\ U e. Word V ) -> ( # ` W ) e. CC ) | 
						
							| 56 | 35 | adantl |  |-  ( ( N e. ZZ /\ M e. ZZ ) -> M e. CC ) | 
						
							| 57 | 55 56 | anim12i |  |-  ( ( ( W e. Word V /\ U e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) -> ( ( # ` W ) e. CC /\ M e. CC ) ) | 
						
							| 58 | 57 | ancomd |  |-  ( ( ( W e. Word V /\ U e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) -> ( M e. CC /\ ( # ` W ) e. CC ) ) | 
						
							| 59 | 58 | adantr |  |-  ( ( ( ( W e. Word V /\ U e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) /\ ( W cyclShift N ) = ( U cyclShift M ) ) -> ( M e. CC /\ ( # ` W ) e. CC ) ) | 
						
							| 60 |  | pncan3 |  |-  ( ( M e. CC /\ ( # ` W ) e. CC ) -> ( M + ( ( # ` W ) - M ) ) = ( # ` W ) ) | 
						
							| 61 | 59 60 | syl |  |-  ( ( ( ( W e. Word V /\ U e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) /\ ( W cyclShift N ) = ( U cyclShift M ) ) -> ( M + ( ( # ` W ) - M ) ) = ( # ` W ) ) | 
						
							| 62 | 61 | oveq2d |  |-  ( ( ( ( W e. Word V /\ U e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) /\ ( W cyclShift N ) = ( U cyclShift M ) ) -> ( W cyclShift ( M + ( ( # ` W ) - M ) ) ) = ( W cyclShift ( # ` W ) ) ) | 
						
							| 63 |  | cshwn |  |-  ( W e. Word V -> ( W cyclShift ( # ` W ) ) = W ) | 
						
							| 64 | 27 63 | syl |  |-  ( ( ( W e. Word V /\ U e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) -> ( W cyclShift ( # ` W ) ) = W ) | 
						
							| 65 | 64 | adantr |  |-  ( ( ( ( W e. Word V /\ U e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) /\ ( W cyclShift N ) = ( U cyclShift M ) ) -> ( W cyclShift ( # ` W ) ) = W ) | 
						
							| 66 | 53 62 65 | 3eqtrd |  |-  ( ( ( ( W e. Word V /\ U e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) /\ ( W cyclShift N ) = ( U cyclShift M ) ) -> ( U cyclShift ( M - N ) ) = W ) | 
						
							| 67 | 66 | ex |  |-  ( ( ( W e. Word V /\ U e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) -> ( ( W cyclShift N ) = ( U cyclShift M ) -> ( U cyclShift ( M - N ) ) = W ) ) |