| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpr | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  →  𝑈  ∈  Word  𝑉 ) | 
						
							| 2 | 1 | adantr | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℤ ) )  →  𝑈  ∈  Word  𝑉 ) | 
						
							| 3 |  | zsubcl | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑀  −  𝑁 )  ∈  ℤ ) | 
						
							| 4 | 3 | ancoms | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℤ )  →  ( 𝑀  −  𝑁 )  ∈  ℤ ) | 
						
							| 5 | 4 | adantl | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℤ ) )  →  ( 𝑀  −  𝑁 )  ∈  ℤ ) | 
						
							| 6 |  | simpr | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℤ )  →  𝑀  ∈  ℤ ) | 
						
							| 7 | 6 | adantl | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℤ ) )  →  𝑀  ∈  ℤ ) | 
						
							| 8 | 2 5 7 | 3jca | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℤ ) )  →  ( 𝑈  ∈  Word  𝑉  ∧  ( 𝑀  −  𝑁 )  ∈  ℤ  ∧  𝑀  ∈  ℤ ) ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℤ ) )  ∧  ( 𝑊  cyclShift  𝑁 )  =  ( 𝑈  cyclShift  𝑀 ) )  →  ( 𝑈  ∈  Word  𝑉  ∧  ( 𝑀  −  𝑁 )  ∈  ℤ  ∧  𝑀  ∈  ℤ ) ) | 
						
							| 10 |  | 3cshw | ⊢ ( ( 𝑈  ∈  Word  𝑉  ∧  ( 𝑀  −  𝑁 )  ∈  ℤ  ∧  𝑀  ∈  ℤ )  →  ( 𝑈  cyclShift  ( 𝑀  −  𝑁 ) )  =  ( ( ( 𝑈  cyclShift  𝑀 )  cyclShift  ( 𝑀  −  𝑁 ) )  cyclShift  ( ( ♯ ‘ 𝑈 )  −  𝑀 ) ) ) | 
						
							| 11 | 9 10 | syl | ⊢ ( ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℤ ) )  ∧  ( 𝑊  cyclShift  𝑁 )  =  ( 𝑈  cyclShift  𝑀 ) )  →  ( 𝑈  cyclShift  ( 𝑀  −  𝑁 ) )  =  ( ( ( 𝑈  cyclShift  𝑀 )  cyclShift  ( 𝑀  −  𝑁 ) )  cyclShift  ( ( ♯ ‘ 𝑈 )  −  𝑀 ) ) ) | 
						
							| 12 |  | simpl | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℤ ) )  →  ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 ) ) | 
						
							| 13 | 12 | ancomd | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℤ ) )  →  ( 𝑈  ∈  Word  𝑉  ∧  𝑊  ∈  Word  𝑉 ) ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℤ ) )  ∧  ( 𝑊  cyclShift  𝑁 )  =  ( 𝑈  cyclShift  𝑀 ) )  →  ( 𝑈  ∈  Word  𝑉  ∧  𝑊  ∈  Word  𝑉 ) ) | 
						
							| 15 |  | simpr | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℤ ) )  →  ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℤ ) ) | 
						
							| 16 | 15 | ancomd | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℤ ) )  →  ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ ) ) | 
						
							| 17 | 16 | adantr | ⊢ ( ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℤ ) )  ∧  ( 𝑊  cyclShift  𝑁 )  =  ( 𝑈  cyclShift  𝑀 ) )  →  ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ ) ) | 
						
							| 18 |  | simpr | ⊢ ( ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℤ ) )  ∧  ( 𝑊  cyclShift  𝑁 )  =  ( 𝑈  cyclShift  𝑀 ) )  →  ( 𝑊  cyclShift  𝑁 )  =  ( 𝑈  cyclShift  𝑀 ) ) | 
						
							| 19 | 18 | eqcomd | ⊢ ( ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℤ ) )  ∧  ( 𝑊  cyclShift  𝑁 )  =  ( 𝑈  cyclShift  𝑀 ) )  →  ( 𝑈  cyclShift  𝑀 )  =  ( 𝑊  cyclShift  𝑁 ) ) | 
						
							| 20 |  | cshwleneq | ⊢ ( ( ( 𝑈  ∈  Word  𝑉  ∧  𝑊  ∈  Word  𝑉 )  ∧  ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ( 𝑈  cyclShift  𝑀 )  =  ( 𝑊  cyclShift  𝑁 ) )  →  ( ♯ ‘ 𝑈 )  =  ( ♯ ‘ 𝑊 ) ) | 
						
							| 21 | 14 17 19 20 | syl3anc | ⊢ ( ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℤ ) )  ∧  ( 𝑊  cyclShift  𝑁 )  =  ( 𝑈  cyclShift  𝑀 ) )  →  ( ♯ ‘ 𝑈 )  =  ( ♯ ‘ 𝑊 ) ) | 
						
							| 22 | 21 | oveq1d | ⊢ ( ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℤ ) )  ∧  ( 𝑊  cyclShift  𝑁 )  =  ( 𝑈  cyclShift  𝑀 ) )  →  ( ( ♯ ‘ 𝑈 )  −  𝑀 )  =  ( ( ♯ ‘ 𝑊 )  −  𝑀 ) ) | 
						
							| 23 | 22 | oveq2d | ⊢ ( ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℤ ) )  ∧  ( 𝑊  cyclShift  𝑁 )  =  ( 𝑈  cyclShift  𝑀 ) )  →  ( ( ( 𝑈  cyclShift  𝑀 )  cyclShift  ( 𝑀  −  𝑁 ) )  cyclShift  ( ( ♯ ‘ 𝑈 )  −  𝑀 ) )  =  ( ( ( 𝑈  cyclShift  𝑀 )  cyclShift  ( 𝑀  −  𝑁 ) )  cyclShift  ( ( ♯ ‘ 𝑊 )  −  𝑀 ) ) ) | 
						
							| 24 | 11 23 | eqtrd | ⊢ ( ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℤ ) )  ∧  ( 𝑊  cyclShift  𝑁 )  =  ( 𝑈  cyclShift  𝑀 ) )  →  ( 𝑈  cyclShift  ( 𝑀  −  𝑁 ) )  =  ( ( ( 𝑈  cyclShift  𝑀 )  cyclShift  ( 𝑀  −  𝑁 ) )  cyclShift  ( ( ♯ ‘ 𝑊 )  −  𝑀 ) ) ) | 
						
							| 25 | 19 | oveq1d | ⊢ ( ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℤ ) )  ∧  ( 𝑊  cyclShift  𝑁 )  =  ( 𝑈  cyclShift  𝑀 ) )  →  ( ( 𝑈  cyclShift  𝑀 )  cyclShift  ( 𝑀  −  𝑁 ) )  =  ( ( 𝑊  cyclShift  𝑁 )  cyclShift  ( 𝑀  −  𝑁 ) ) ) | 
						
							| 26 |  | simpl | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  →  𝑊  ∈  Word  𝑉 ) | 
						
							| 27 | 26 | adantr | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℤ ) )  →  𝑊  ∈  Word  𝑉 ) | 
						
							| 28 |  | simpl | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℤ )  →  𝑁  ∈  ℤ ) | 
						
							| 29 | 28 | adantl | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℤ ) )  →  𝑁  ∈  ℤ ) | 
						
							| 30 | 27 29 5 | 3jca | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℤ ) )  →  ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℤ  ∧  ( 𝑀  −  𝑁 )  ∈  ℤ ) ) | 
						
							| 31 | 30 | adantr | ⊢ ( ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℤ ) )  ∧  ( 𝑊  cyclShift  𝑁 )  =  ( 𝑈  cyclShift  𝑀 ) )  →  ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℤ  ∧  ( 𝑀  −  𝑁 )  ∈  ℤ ) ) | 
						
							| 32 |  | 2cshw | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℤ  ∧  ( 𝑀  −  𝑁 )  ∈  ℤ )  →  ( ( 𝑊  cyclShift  𝑁 )  cyclShift  ( 𝑀  −  𝑁 ) )  =  ( 𝑊  cyclShift  ( 𝑁  +  ( 𝑀  −  𝑁 ) ) ) ) | 
						
							| 33 | 31 32 | syl | ⊢ ( ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℤ ) )  ∧  ( 𝑊  cyclShift  𝑁 )  =  ( 𝑈  cyclShift  𝑀 ) )  →  ( ( 𝑊  cyclShift  𝑁 )  cyclShift  ( 𝑀  −  𝑁 ) )  =  ( 𝑊  cyclShift  ( 𝑁  +  ( 𝑀  −  𝑁 ) ) ) ) | 
						
							| 34 |  | zcn | ⊢ ( 𝑁  ∈  ℤ  →  𝑁  ∈  ℂ ) | 
						
							| 35 |  | zcn | ⊢ ( 𝑀  ∈  ℤ  →  𝑀  ∈  ℂ ) | 
						
							| 36 | 34 35 | anim12i | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℤ )  →  ( 𝑁  ∈  ℂ  ∧  𝑀  ∈  ℂ ) ) | 
						
							| 37 | 36 | adantl | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℤ ) )  →  ( 𝑁  ∈  ℂ  ∧  𝑀  ∈  ℂ ) ) | 
						
							| 38 | 37 | adantr | ⊢ ( ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℤ ) )  ∧  ( 𝑊  cyclShift  𝑁 )  =  ( 𝑈  cyclShift  𝑀 ) )  →  ( 𝑁  ∈  ℂ  ∧  𝑀  ∈  ℂ ) ) | 
						
							| 39 |  | pncan3 | ⊢ ( ( 𝑁  ∈  ℂ  ∧  𝑀  ∈  ℂ )  →  ( 𝑁  +  ( 𝑀  −  𝑁 ) )  =  𝑀 ) | 
						
							| 40 | 38 39 | syl | ⊢ ( ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℤ ) )  ∧  ( 𝑊  cyclShift  𝑁 )  =  ( 𝑈  cyclShift  𝑀 ) )  →  ( 𝑁  +  ( 𝑀  −  𝑁 ) )  =  𝑀 ) | 
						
							| 41 | 40 | oveq2d | ⊢ ( ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℤ ) )  ∧  ( 𝑊  cyclShift  𝑁 )  =  ( 𝑈  cyclShift  𝑀 ) )  →  ( 𝑊  cyclShift  ( 𝑁  +  ( 𝑀  −  𝑁 ) ) )  =  ( 𝑊  cyclShift  𝑀 ) ) | 
						
							| 42 | 25 33 41 | 3eqtrd | ⊢ ( ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℤ ) )  ∧  ( 𝑊  cyclShift  𝑁 )  =  ( 𝑈  cyclShift  𝑀 ) )  →  ( ( 𝑈  cyclShift  𝑀 )  cyclShift  ( 𝑀  −  𝑁 ) )  =  ( 𝑊  cyclShift  𝑀 ) ) | 
						
							| 43 | 42 | oveq1d | ⊢ ( ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℤ ) )  ∧  ( 𝑊  cyclShift  𝑁 )  =  ( 𝑈  cyclShift  𝑀 ) )  →  ( ( ( 𝑈  cyclShift  𝑀 )  cyclShift  ( 𝑀  −  𝑁 ) )  cyclShift  ( ( ♯ ‘ 𝑊 )  −  𝑀 ) )  =  ( ( 𝑊  cyclShift  𝑀 )  cyclShift  ( ( ♯ ‘ 𝑊 )  −  𝑀 ) ) ) | 
						
							| 44 |  | lencl | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( ♯ ‘ 𝑊 )  ∈  ℕ0 ) | 
						
							| 45 | 44 | nn0zd | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( ♯ ‘ 𝑊 )  ∈  ℤ ) | 
						
							| 46 | 45 | adantr | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  →  ( ♯ ‘ 𝑊 )  ∈  ℤ ) | 
						
							| 47 |  | zsubcl | ⊢ ( ( ( ♯ ‘ 𝑊 )  ∈  ℤ  ∧  𝑀  ∈  ℤ )  →  ( ( ♯ ‘ 𝑊 )  −  𝑀 )  ∈  ℤ ) | 
						
							| 48 | 46 6 47 | syl2an | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℤ ) )  →  ( ( ♯ ‘ 𝑊 )  −  𝑀 )  ∈  ℤ ) | 
						
							| 49 | 27 7 48 | 3jca | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℤ ) )  →  ( 𝑊  ∈  Word  𝑉  ∧  𝑀  ∈  ℤ  ∧  ( ( ♯ ‘ 𝑊 )  −  𝑀 )  ∈  ℤ ) ) | 
						
							| 50 | 49 | adantr | ⊢ ( ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℤ ) )  ∧  ( 𝑊  cyclShift  𝑁 )  =  ( 𝑈  cyclShift  𝑀 ) )  →  ( 𝑊  ∈  Word  𝑉  ∧  𝑀  ∈  ℤ  ∧  ( ( ♯ ‘ 𝑊 )  −  𝑀 )  ∈  ℤ ) ) | 
						
							| 51 |  | 2cshw | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑀  ∈  ℤ  ∧  ( ( ♯ ‘ 𝑊 )  −  𝑀 )  ∈  ℤ )  →  ( ( 𝑊  cyclShift  𝑀 )  cyclShift  ( ( ♯ ‘ 𝑊 )  −  𝑀 ) )  =  ( 𝑊  cyclShift  ( 𝑀  +  ( ( ♯ ‘ 𝑊 )  −  𝑀 ) ) ) ) | 
						
							| 52 | 50 51 | syl | ⊢ ( ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℤ ) )  ∧  ( 𝑊  cyclShift  𝑁 )  =  ( 𝑈  cyclShift  𝑀 ) )  →  ( ( 𝑊  cyclShift  𝑀 )  cyclShift  ( ( ♯ ‘ 𝑊 )  −  𝑀 ) )  =  ( 𝑊  cyclShift  ( 𝑀  +  ( ( ♯ ‘ 𝑊 )  −  𝑀 ) ) ) ) | 
						
							| 53 | 24 43 52 | 3eqtrd | ⊢ ( ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℤ ) )  ∧  ( 𝑊  cyclShift  𝑁 )  =  ( 𝑈  cyclShift  𝑀 ) )  →  ( 𝑈  cyclShift  ( 𝑀  −  𝑁 ) )  =  ( 𝑊  cyclShift  ( 𝑀  +  ( ( ♯ ‘ 𝑊 )  −  𝑀 ) ) ) ) | 
						
							| 54 | 44 | nn0cnd | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( ♯ ‘ 𝑊 )  ∈  ℂ ) | 
						
							| 55 | 54 | adantr | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  →  ( ♯ ‘ 𝑊 )  ∈  ℂ ) | 
						
							| 56 | 35 | adantl | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℤ )  →  𝑀  ∈  ℂ ) | 
						
							| 57 | 55 56 | anim12i | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℤ ) )  →  ( ( ♯ ‘ 𝑊 )  ∈  ℂ  ∧  𝑀  ∈  ℂ ) ) | 
						
							| 58 | 57 | ancomd | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℤ ) )  →  ( 𝑀  ∈  ℂ  ∧  ( ♯ ‘ 𝑊 )  ∈  ℂ ) ) | 
						
							| 59 | 58 | adantr | ⊢ ( ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℤ ) )  ∧  ( 𝑊  cyclShift  𝑁 )  =  ( 𝑈  cyclShift  𝑀 ) )  →  ( 𝑀  ∈  ℂ  ∧  ( ♯ ‘ 𝑊 )  ∈  ℂ ) ) | 
						
							| 60 |  | pncan3 | ⊢ ( ( 𝑀  ∈  ℂ  ∧  ( ♯ ‘ 𝑊 )  ∈  ℂ )  →  ( 𝑀  +  ( ( ♯ ‘ 𝑊 )  −  𝑀 ) )  =  ( ♯ ‘ 𝑊 ) ) | 
						
							| 61 | 59 60 | syl | ⊢ ( ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℤ ) )  ∧  ( 𝑊  cyclShift  𝑁 )  =  ( 𝑈  cyclShift  𝑀 ) )  →  ( 𝑀  +  ( ( ♯ ‘ 𝑊 )  −  𝑀 ) )  =  ( ♯ ‘ 𝑊 ) ) | 
						
							| 62 | 61 | oveq2d | ⊢ ( ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℤ ) )  ∧  ( 𝑊  cyclShift  𝑁 )  =  ( 𝑈  cyclShift  𝑀 ) )  →  ( 𝑊  cyclShift  ( 𝑀  +  ( ( ♯ ‘ 𝑊 )  −  𝑀 ) ) )  =  ( 𝑊  cyclShift  ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 63 |  | cshwn | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( 𝑊  cyclShift  ( ♯ ‘ 𝑊 ) )  =  𝑊 ) | 
						
							| 64 | 27 63 | syl | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℤ ) )  →  ( 𝑊  cyclShift  ( ♯ ‘ 𝑊 ) )  =  𝑊 ) | 
						
							| 65 | 64 | adantr | ⊢ ( ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℤ ) )  ∧  ( 𝑊  cyclShift  𝑁 )  =  ( 𝑈  cyclShift  𝑀 ) )  →  ( 𝑊  cyclShift  ( ♯ ‘ 𝑊 ) )  =  𝑊 ) | 
						
							| 66 | 53 62 65 | 3eqtrd | ⊢ ( ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℤ ) )  ∧  ( 𝑊  cyclShift  𝑁 )  =  ( 𝑈  cyclShift  𝑀 ) )  →  ( 𝑈  cyclShift  ( 𝑀  −  𝑁 ) )  =  𝑊 ) | 
						
							| 67 | 66 | ex | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℤ ) )  →  ( ( 𝑊  cyclShift  𝑁 )  =  ( 𝑈  cyclShift  𝑀 )  →  ( 𝑈  cyclShift  ( 𝑀  −  𝑁 ) )  =  𝑊 ) ) |