| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mdsl.1 |
|- A e. CH |
| 2 |
|
mdsl.2 |
|- B e. CH |
| 3 |
|
anass |
|- ( ( ( ( A i^i B ) C_ x /\ x C_ ( A vH B ) ) /\ x C_ B ) <-> ( ( A i^i B ) C_ x /\ ( x C_ ( A vH B ) /\ x C_ B ) ) ) |
| 4 |
2 1
|
chub2i |
|- B C_ ( A vH B ) |
| 5 |
|
sstr |
|- ( ( x C_ B /\ B C_ ( A vH B ) ) -> x C_ ( A vH B ) ) |
| 6 |
4 5
|
mpan2 |
|- ( x C_ B -> x C_ ( A vH B ) ) |
| 7 |
6
|
pm4.71ri |
|- ( x C_ B <-> ( x C_ ( A vH B ) /\ x C_ B ) ) |
| 8 |
7
|
anbi2i |
|- ( ( ( A i^i B ) C_ x /\ x C_ B ) <-> ( ( A i^i B ) C_ x /\ ( x C_ ( A vH B ) /\ x C_ B ) ) ) |
| 9 |
3 8
|
bitr4i |
|- ( ( ( ( A i^i B ) C_ x /\ x C_ ( A vH B ) ) /\ x C_ B ) <-> ( ( A i^i B ) C_ x /\ x C_ B ) ) |
| 10 |
1 2
|
chincli |
|- ( A i^i B ) e. CH |
| 11 |
|
cvnbtwn4 |
|- ( ( ( A i^i B ) e. CH /\ B e. CH /\ x e. CH ) -> ( ( A i^i B ) ( ( ( A i^i B ) C_ x /\ x C_ B ) -> ( x = ( A i^i B ) \/ x = B ) ) ) ) |
| 12 |
10 2 11
|
mp3an12 |
|- ( x e. CH -> ( ( A i^i B ) ( ( ( A i^i B ) C_ x /\ x C_ B ) -> ( x = ( A i^i B ) \/ x = B ) ) ) ) |
| 13 |
12
|
impcom |
|- ( ( ( A i^i B ) ( ( ( A i^i B ) C_ x /\ x C_ B ) -> ( x = ( A i^i B ) \/ x = B ) ) ) |
| 14 |
10 1
|
chjcomi |
|- ( ( A i^i B ) vH A ) = ( A vH ( A i^i B ) ) |
| 15 |
1 2
|
chabs1i |
|- ( A vH ( A i^i B ) ) = A |
| 16 |
14 15
|
eqtri |
|- ( ( A i^i B ) vH A ) = A |
| 17 |
16
|
ineq1i |
|- ( ( ( A i^i B ) vH A ) i^i B ) = ( A i^i B ) |
| 18 |
10
|
chjidmi |
|- ( ( A i^i B ) vH ( A i^i B ) ) = ( A i^i B ) |
| 19 |
17 18
|
eqtr4i |
|- ( ( ( A i^i B ) vH A ) i^i B ) = ( ( A i^i B ) vH ( A i^i B ) ) |
| 20 |
|
oveq1 |
|- ( x = ( A i^i B ) -> ( x vH A ) = ( ( A i^i B ) vH A ) ) |
| 21 |
20
|
ineq1d |
|- ( x = ( A i^i B ) -> ( ( x vH A ) i^i B ) = ( ( ( A i^i B ) vH A ) i^i B ) ) |
| 22 |
|
oveq1 |
|- ( x = ( A i^i B ) -> ( x vH ( A i^i B ) ) = ( ( A i^i B ) vH ( A i^i B ) ) ) |
| 23 |
19 21 22
|
3eqtr4a |
|- ( x = ( A i^i B ) -> ( ( x vH A ) i^i B ) = ( x vH ( A i^i B ) ) ) |
| 24 |
|
incom |
|- ( ( B vH A ) i^i B ) = ( B i^i ( B vH A ) ) |
| 25 |
2 1
|
chabs2i |
|- ( B i^i ( B vH A ) ) = B |
| 26 |
2 1
|
chabs1i |
|- ( B vH ( B i^i A ) ) = B |
| 27 |
|
incom |
|- ( B i^i A ) = ( A i^i B ) |
| 28 |
27
|
oveq2i |
|- ( B vH ( B i^i A ) ) = ( B vH ( A i^i B ) ) |
| 29 |
25 26 28
|
3eqtr2i |
|- ( B i^i ( B vH A ) ) = ( B vH ( A i^i B ) ) |
| 30 |
24 29
|
eqtri |
|- ( ( B vH A ) i^i B ) = ( B vH ( A i^i B ) ) |
| 31 |
|
oveq1 |
|- ( x = B -> ( x vH A ) = ( B vH A ) ) |
| 32 |
31
|
ineq1d |
|- ( x = B -> ( ( x vH A ) i^i B ) = ( ( B vH A ) i^i B ) ) |
| 33 |
|
oveq1 |
|- ( x = B -> ( x vH ( A i^i B ) ) = ( B vH ( A i^i B ) ) ) |
| 34 |
30 32 33
|
3eqtr4a |
|- ( x = B -> ( ( x vH A ) i^i B ) = ( x vH ( A i^i B ) ) ) |
| 35 |
23 34
|
jaoi |
|- ( ( x = ( A i^i B ) \/ x = B ) -> ( ( x vH A ) i^i B ) = ( x vH ( A i^i B ) ) ) |
| 36 |
13 35
|
syl6 |
|- ( ( ( A i^i B ) ( ( ( A i^i B ) C_ x /\ x C_ B ) -> ( ( x vH A ) i^i B ) = ( x vH ( A i^i B ) ) ) ) |
| 37 |
9 36
|
biimtrid |
|- ( ( ( A i^i B ) ( ( ( ( A i^i B ) C_ x /\ x C_ ( A vH B ) ) /\ x C_ B ) -> ( ( x vH A ) i^i B ) = ( x vH ( A i^i B ) ) ) ) |
| 38 |
37
|
exp4b |
|- ( ( A i^i B ) ( x e. CH -> ( ( ( A i^i B ) C_ x /\ x C_ ( A vH B ) ) -> ( x C_ B -> ( ( x vH A ) i^i B ) = ( x vH ( A i^i B ) ) ) ) ) ) |
| 39 |
38
|
ralrimiv |
|- ( ( A i^i B ) A. x e. CH ( ( ( A i^i B ) C_ x /\ x C_ ( A vH B ) ) -> ( x C_ B -> ( ( x vH A ) i^i B ) = ( x vH ( A i^i B ) ) ) ) ) |
| 40 |
1 2
|
mdsl1i |
|- ( A. x e. CH ( ( ( A i^i B ) C_ x /\ x C_ ( A vH B ) ) -> ( x C_ B -> ( ( x vH A ) i^i B ) = ( x vH ( A i^i B ) ) ) ) <-> A MH B ) |
| 41 |
39 40
|
sylib |
|- ( ( A i^i B ) A MH B ) |