Metamath Proof Explorer


Theorem cvmdi

Description: The covering property implies the modular pair property. Lemma 7.5.1 of MaedaMaeda p. 31. (Contributed by NM, 16-Jun-2004) (New usage is discouraged.)

Ref Expression
Hypotheses mdsl.1 A C
mdsl.2 B C
Assertion cvmdi A B B A 𝑀 B

Proof

Step Hyp Ref Expression
1 mdsl.1 A C
2 mdsl.2 B C
3 anass A B x x A B x B A B x x A B x B
4 2 1 chub2i B A B
5 sstr x B B A B x A B
6 4 5 mpan2 x B x A B
7 6 pm4.71ri x B x A B x B
8 7 anbi2i A B x x B A B x x A B x B
9 3 8 bitr4i A B x x A B x B A B x x B
10 1 2 chincli A B C
11 cvnbtwn4 A B C B C x C A B B A B x x B x = A B x = B
12 10 2 11 mp3an12 x C A B B A B x x B x = A B x = B
13 12 impcom A B B x C A B x x B x = A B x = B
14 10 1 chjcomi A B A = A A B
15 1 2 chabs1i A A B = A
16 14 15 eqtri A B A = A
17 16 ineq1i A B A B = A B
18 10 chjidmi A B A B = A B
19 17 18 eqtr4i A B A B = A B A B
20 oveq1 x = A B x A = A B A
21 20 ineq1d x = A B x A B = A B A B
22 oveq1 x = A B x A B = A B A B
23 19 21 22 3eqtr4a x = A B x A B = x A B
24 incom B A B = B B A
25 2 1 chabs2i B B A = B
26 2 1 chabs1i B B A = B
27 incom B A = A B
28 27 oveq2i B B A = B A B
29 25 26 28 3eqtr2i B B A = B A B
30 24 29 eqtri B A B = B A B
31 oveq1 x = B x A = B A
32 31 ineq1d x = B x A B = B A B
33 oveq1 x = B x A B = B A B
34 30 32 33 3eqtr4a x = B x A B = x A B
35 23 34 jaoi x = A B x = B x A B = x A B
36 13 35 syl6 A B B x C A B x x B x A B = x A B
37 9 36 syl5bi A B B x C A B x x A B x B x A B = x A B
38 37 exp4b A B B x C A B x x A B x B x A B = x A B
39 38 ralrimiv A B B x C A B x x A B x B x A B = x A B
40 1 2 mdsl1i x C A B x x A B x B x A B = x A B A 𝑀 B
41 39 40 sylib A B B A 𝑀 B