Database
COMPLEX HILBERT SPACE EXPLORER (DEPRECATED)
Cover relation, atoms, exchange axiom, and modular symmetry
Covers relation; modular pairs
mdslmd1lem1
Next ⟩
mdslmd1lem2
Metamath Proof Explorer
Ascii
Unicode
Theorem
mdslmd1lem1
Description:
Lemma for
mdslmd1i
.
(Contributed by
NM
, 29-Apr-2006)
(New usage is discouraged.)
Ref
Expression
Hypotheses
mdslmd.1
⊢
A
∈
C
ℋ
mdslmd.2
⊢
B
∈
C
ℋ
mdslmd.3
⊢
C
∈
C
ℋ
mdslmd.4
⊢
D
∈
C
ℋ
mdslmd1lem.5
⊢
R
∈
C
ℋ
Assertion
mdslmd1lem1
⊢
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
∧
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
→
R
∨
ℋ
A
⊆
D
→
R
∨
ℋ
A
∨
ℋ
C
∩
D
⊆
R
∨
ℋ
A
∨
ℋ
C
∩
D
→
C
∩
B
∩
D
∩
B
⊆
R
∧
R
⊆
D
∩
B
→
R
∨
ℋ
C
∩
B
∩
D
∩
B
⊆
R
∨
ℋ
C
∩
B
∩
D
∩
B
Proof
Step
Hyp
Ref
Expression
1
mdslmd.1
⊢
A
∈
C
ℋ
2
mdslmd.2
⊢
B
∈
C
ℋ
3
mdslmd.3
⊢
C
∈
C
ℋ
4
mdslmd.4
⊢
D
∈
C
ℋ
5
mdslmd1lem.5
⊢
R
∈
C
ℋ
6
4
2
chincli
⊢
D
∩
B
∈
C
ℋ
7
5
6
1
chlej1i
⊢
R
⊆
D
∩
B
→
R
∨
ℋ
A
⊆
D
∩
B
∨
ℋ
A
8
simpr
⊢
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
→
B
𝑀
ℋ
*
A
9
simpr
⊢
A
⊆
C
∧
A
⊆
D
→
A
⊆
D
10
simpr
⊢
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
→
D
⊆
A
∨
ℋ
B
11
1
2
4
3pm3.2i
⊢
A
∈
C
ℋ
∧
B
∈
C
ℋ
∧
D
∈
C
ℋ
12
dmdsl3
⊢
A
∈
C
ℋ
∧
B
∈
C
ℋ
∧
D
∈
C
ℋ
∧
B
𝑀
ℋ
*
A
∧
A
⊆
D
∧
D
⊆
A
∨
ℋ
B
→
D
∩
B
∨
ℋ
A
=
D
13
11
12
mpan
⊢
B
𝑀
ℋ
*
A
∧
A
⊆
D
∧
D
⊆
A
∨
ℋ
B
→
D
∩
B
∨
ℋ
A
=
D
14
8
9
10
13
syl3an
⊢
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
∧
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
→
D
∩
B
∨
ℋ
A
=
D
15
14
3expb
⊢
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
∧
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
→
D
∩
B
∨
ℋ
A
=
D
16
15
sseq2d
⊢
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
∧
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
→
R
∨
ℋ
A
⊆
D
∩
B
∨
ℋ
A
↔
R
∨
ℋ
A
⊆
D
17
7
16
imbitrid
⊢
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
∧
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
→
R
⊆
D
∩
B
→
R
∨
ℋ
A
⊆
D
18
17
adantld
⊢
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
∧
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
→
C
∩
B
∩
D
∩
B
⊆
R
∧
R
⊆
D
∩
B
→
R
∨
ℋ
A
⊆
D
19
18
imim1d
⊢
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
∧
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
→
R
∨
ℋ
A
⊆
D
→
R
∨
ℋ
A
∨
ℋ
C
∩
D
⊆
R
∨
ℋ
A
∨
ℋ
C
∩
D
→
C
∩
B
∩
D
∩
B
⊆
R
∧
R
⊆
D
∩
B
→
R
∨
ℋ
A
∨
ℋ
C
∩
D
⊆
R
∨
ℋ
A
∨
ℋ
C
∩
D
20
simpll
⊢
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
∧
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
∧
C
∩
B
∩
D
∩
B
⊆
R
∧
R
⊆
D
∩
B
→
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
21
simpll
⊢
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
→
A
⊆
C
22
21
ad2antlr
⊢
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
∧
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
∧
C
∩
B
∩
D
∩
B
⊆
R
∧
R
⊆
D
∩
B
→
A
⊆
C
23
1
5
chub2i
⊢
A
⊆
R
∨
ℋ
A
24
22
23
jctil
⊢
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
∧
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
∧
C
∩
B
∩
D
∩
B
⊆
R
∧
R
⊆
D
∩
B
→
A
⊆
R
∨
ℋ
A
∧
A
⊆
C
25
ssin
⊢
A
⊆
R
∨
ℋ
A
∧
A
⊆
C
↔
A
⊆
R
∨
ℋ
A
∩
C
26
24
25
sylib
⊢
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
∧
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
∧
C
∩
B
∩
D
∩
B
⊆
R
∧
R
⊆
D
∩
B
→
A
⊆
R
∨
ℋ
A
∩
C
27
inss1
⊢
D
∩
B
⊆
D
28
sstr
⊢
R
⊆
D
∩
B
∧
D
∩
B
⊆
D
→
R
⊆
D
29
27
28
mpan2
⊢
R
⊆
D
∩
B
→
R
⊆
D
30
sstr
⊢
R
⊆
D
∧
D
⊆
A
∨
ℋ
B
→
R
⊆
A
∨
ℋ
B
31
29
30
sylan
⊢
R
⊆
D
∩
B
∧
D
⊆
A
∨
ℋ
B
→
R
⊆
A
∨
ℋ
B
32
31
ancoms
⊢
D
⊆
A
∨
ℋ
B
∧
R
⊆
D
∩
B
→
R
⊆
A
∨
ℋ
B
33
32
adantll
⊢
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
∧
R
⊆
D
∩
B
→
R
⊆
A
∨
ℋ
B
34
33
adantll
⊢
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
∧
R
⊆
D
∩
B
→
R
⊆
A
∨
ℋ
B
35
34
ad2ant2l
⊢
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
∧
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
∧
C
∩
B
∩
D
∩
B
⊆
R
∧
R
⊆
D
∩
B
→
R
⊆
A
∨
ℋ
B
36
1
2
chub1i
⊢
A
⊆
A
∨
ℋ
B
37
35
36
jctir
⊢
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
∧
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
∧
C
∩
B
∩
D
∩
B
⊆
R
∧
R
⊆
D
∩
B
→
R
⊆
A
∨
ℋ
B
∧
A
⊆
A
∨
ℋ
B
38
1
2
chjcli
⊢
A
∨
ℋ
B
∈
C
ℋ
39
5
1
38
chlubi
⊢
R
⊆
A
∨
ℋ
B
∧
A
⊆
A
∨
ℋ
B
↔
R
∨
ℋ
A
⊆
A
∨
ℋ
B
40
37
39
sylib
⊢
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
∧
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
∧
C
∩
B
∩
D
∩
B
⊆
R
∧
R
⊆
D
∩
B
→
R
∨
ℋ
A
⊆
A
∨
ℋ
B
41
simprrl
⊢
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
∧
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
→
C
⊆
A
∨
ℋ
B
42
41
adantr
⊢
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
∧
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
∧
C
∩
B
∩
D
∩
B
⊆
R
∧
R
⊆
D
∩
B
→
C
⊆
A
∨
ℋ
B
43
40
42
jca
⊢
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
∧
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
∧
C
∩
B
∩
D
∩
B
⊆
R
∧
R
⊆
D
∩
B
→
R
∨
ℋ
A
⊆
A
∨
ℋ
B
∧
C
⊆
A
∨
ℋ
B
44
5
1
chjcli
⊢
R
∨
ℋ
A
∈
C
ℋ
45
44
3
38
chlubi
⊢
R
∨
ℋ
A
⊆
A
∨
ℋ
B
∧
C
⊆
A
∨
ℋ
B
↔
R
∨
ℋ
A
∨
ℋ
C
⊆
A
∨
ℋ
B
46
43
45
sylib
⊢
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
∧
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
∧
C
∩
B
∩
D
∩
B
⊆
R
∧
R
⊆
D
∩
B
→
R
∨
ℋ
A
∨
ℋ
C
⊆
A
∨
ℋ
B
47
1
2
44
3
mdslj1i
⊢
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
∧
A
⊆
R
∨
ℋ
A
∩
C
∧
R
∨
ℋ
A
∨
ℋ
C
⊆
A
∨
ℋ
B
→
R
∨
ℋ
A
∨
ℋ
C
∩
B
=
R
∨
ℋ
A
∩
B
∨
ℋ
C
∩
B
48
20
26
46
47
syl12anc
⊢
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
∧
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
∧
C
∩
B
∩
D
∩
B
⊆
R
∧
R
⊆
D
∩
B
→
R
∨
ℋ
A
∨
ℋ
C
∩
B
=
R
∨
ℋ
A
∩
B
∨
ℋ
C
∩
B
49
simplll
⊢
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
∧
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
∧
C
∩
B
∩
D
∩
B
⊆
R
∧
R
⊆
D
∩
B
→
A
𝑀
ℋ
B
50
simplrl
⊢
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
∧
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
∧
C
∩
B
∩
D
∩
B
⊆
R
∧
R
⊆
D
∩
B
→
A
⊆
C
∧
A
⊆
D
51
ssin
⊢
A
⊆
C
∧
A
⊆
D
↔
A
⊆
C
∩
D
52
50
51
sylib
⊢
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
∧
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
∧
C
∩
B
∩
D
∩
B
⊆
R
∧
R
⊆
D
∩
B
→
A
⊆
C
∩
D
53
52
ssrind
⊢
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
∧
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
∧
C
∩
B
∩
D
∩
B
⊆
R
∧
R
⊆
D
∩
B
→
A
∩
B
⊆
C
∩
D
∩
B
54
inindir
⊢
C
∩
D
∩
B
=
C
∩
B
∩
D
∩
B
55
53
54
sseqtrdi
⊢
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
∧
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
∧
C
∩
B
∩
D
∩
B
⊆
R
∧
R
⊆
D
∩
B
→
A
∩
B
⊆
C
∩
B
∩
D
∩
B
56
simprl
⊢
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
∧
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
∧
C
∩
B
∩
D
∩
B
⊆
R
∧
R
⊆
D
∩
B
→
C
∩
B
∩
D
∩
B
⊆
R
57
55
56
sstrd
⊢
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
∧
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
∧
C
∩
B
∩
D
∩
B
⊆
R
∧
R
⊆
D
∩
B
→
A
∩
B
⊆
R
58
inss2
⊢
D
∩
B
⊆
B
59
sstr
⊢
R
⊆
D
∩
B
∧
D
∩
B
⊆
B
→
R
⊆
B
60
58
59
mpan2
⊢
R
⊆
D
∩
B
→
R
⊆
B
61
60
ad2antll
⊢
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
∧
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
∧
C
∩
B
∩
D
∩
B
⊆
R
∧
R
⊆
D
∩
B
→
R
⊆
B
62
1
2
5
3pm3.2i
⊢
A
∈
C
ℋ
∧
B
∈
C
ℋ
∧
R
∈
C
ℋ
63
mdsl3
⊢
A
∈
C
ℋ
∧
B
∈
C
ℋ
∧
R
∈
C
ℋ
∧
A
𝑀
ℋ
B
∧
A
∩
B
⊆
R
∧
R
⊆
B
→
R
∨
ℋ
A
∩
B
=
R
64
62
63
mpan
⊢
A
𝑀
ℋ
B
∧
A
∩
B
⊆
R
∧
R
⊆
B
→
R
∨
ℋ
A
∩
B
=
R
65
49
57
61
64
syl3anc
⊢
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
∧
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
∧
C
∩
B
∩
D
∩
B
⊆
R
∧
R
⊆
D
∩
B
→
R
∨
ℋ
A
∩
B
=
R
66
65
oveq1d
⊢
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
∧
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
∧
C
∩
B
∩
D
∩
B
⊆
R
∧
R
⊆
D
∩
B
→
R
∨
ℋ
A
∩
B
∨
ℋ
C
∩
B
=
R
∨
ℋ
C
∩
B
67
48
66
eqtr2d
⊢
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
∧
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
∧
C
∩
B
∩
D
∩
B
⊆
R
∧
R
⊆
D
∩
B
→
R
∨
ℋ
C
∩
B
=
R
∨
ℋ
A
∨
ℋ
C
∩
B
68
67
ineq1d
⊢
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
∧
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
∧
C
∩
B
∩
D
∩
B
⊆
R
∧
R
⊆
D
∩
B
→
R
∨
ℋ
C
∩
B
∩
D
∩
B
=
R
∨
ℋ
A
∨
ℋ
C
∩
B
∩
D
∩
B
69
inindir
⊢
R
∨
ℋ
A
∨
ℋ
C
∩
D
∩
B
=
R
∨
ℋ
A
∨
ℋ
C
∩
B
∩
D
∩
B
70
68
69
eqtr4di
⊢
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
∧
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
∧
C
∩
B
∩
D
∩
B
⊆
R
∧
R
⊆
D
∩
B
→
R
∨
ℋ
C
∩
B
∩
D
∩
B
=
R
∨
ℋ
A
∨
ℋ
C
∩
D
∩
B
71
52
23
jctil
⊢
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
∧
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
∧
C
∩
B
∩
D
∩
B
⊆
R
∧
R
⊆
D
∩
B
→
A
⊆
R
∨
ℋ
A
∧
A
⊆
C
∩
D
72
ssin
⊢
A
⊆
R
∨
ℋ
A
∧
A
⊆
C
∩
D
↔
A
⊆
R
∨
ℋ
A
∩
C
∩
D
73
71
72
sylib
⊢
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
∧
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
∧
C
∩
B
∩
D
∩
B
⊆
R
∧
R
⊆
D
∩
B
→
A
⊆
R
∨
ℋ
A
∩
C
∩
D
74
ssinss1
⊢
C
⊆
A
∨
ℋ
B
→
C
∩
D
⊆
A
∨
ℋ
B
75
74
ad2antrl
⊢
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
→
C
∩
D
⊆
A
∨
ℋ
B
76
75
ad2antlr
⊢
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
∧
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
∧
C
∩
B
∩
D
∩
B
⊆
R
∧
R
⊆
D
∩
B
→
C
∩
D
⊆
A
∨
ℋ
B
77
40
76
jca
⊢
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
∧
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
∧
C
∩
B
∩
D
∩
B
⊆
R
∧
R
⊆
D
∩
B
→
R
∨
ℋ
A
⊆
A
∨
ℋ
B
∧
C
∩
D
⊆
A
∨
ℋ
B
78
3
4
chincli
⊢
C
∩
D
∈
C
ℋ
79
44
78
38
chlubi
⊢
R
∨
ℋ
A
⊆
A
∨
ℋ
B
∧
C
∩
D
⊆
A
∨
ℋ
B
↔
R
∨
ℋ
A
∨
ℋ
C
∩
D
⊆
A
∨
ℋ
B
80
77
79
sylib
⊢
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
∧
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
∧
C
∩
B
∩
D
∩
B
⊆
R
∧
R
⊆
D
∩
B
→
R
∨
ℋ
A
∨
ℋ
C
∩
D
⊆
A
∨
ℋ
B
81
1
2
44
78
mdslj1i
⊢
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
∧
A
⊆
R
∨
ℋ
A
∩
C
∩
D
∧
R
∨
ℋ
A
∨
ℋ
C
∩
D
⊆
A
∨
ℋ
B
→
R
∨
ℋ
A
∨
ℋ
C
∩
D
∩
B
=
R
∨
ℋ
A
∩
B
∨
ℋ
C
∩
D
∩
B
82
20
73
80
81
syl12anc
⊢
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
∧
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
∧
C
∩
B
∩
D
∩
B
⊆
R
∧
R
⊆
D
∩
B
→
R
∨
ℋ
A
∨
ℋ
C
∩
D
∩
B
=
R
∨
ℋ
A
∩
B
∨
ℋ
C
∩
D
∩
B
83
54
a1i
⊢
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
∧
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
∧
C
∩
B
∩
D
∩
B
⊆
R
∧
R
⊆
D
∩
B
→
C
∩
D
∩
B
=
C
∩
B
∩
D
∩
B
84
65
83
oveq12d
⊢
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
∧
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
∧
C
∩
B
∩
D
∩
B
⊆
R
∧
R
⊆
D
∩
B
→
R
∨
ℋ
A
∩
B
∨
ℋ
C
∩
D
∩
B
=
R
∨
ℋ
C
∩
B
∩
D
∩
B
85
82
84
eqtr2d
⊢
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
∧
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
∧
C
∩
B
∩
D
∩
B
⊆
R
∧
R
⊆
D
∩
B
→
R
∨
ℋ
C
∩
B
∩
D
∩
B
=
R
∨
ℋ
A
∨
ℋ
C
∩
D
∩
B
86
70
85
sseq12d
⊢
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
∧
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
∧
C
∩
B
∩
D
∩
B
⊆
R
∧
R
⊆
D
∩
B
→
R
∨
ℋ
C
∩
B
∩
D
∩
B
⊆
R
∨
ℋ
C
∩
B
∩
D
∩
B
↔
R
∨
ℋ
A
∨
ℋ
C
∩
D
∩
B
⊆
R
∨
ℋ
A
∨
ℋ
C
∩
D
∩
B
87
simpllr
⊢
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
∧
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
∧
C
∩
B
∩
D
∩
B
⊆
R
∧
R
⊆
D
∩
B
→
B
𝑀
ℋ
*
A
88
simplr
⊢
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
→
A
⊆
D
89
88
ad2antlr
⊢
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
∧
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
∧
C
∩
B
∩
D
∩
B
⊆
R
∧
R
⊆
D
∩
B
→
A
⊆
D
90
44
3
chub1i
⊢
R
∨
ℋ
A
⊆
R
∨
ℋ
A
∨
ℋ
C
91
23
90
sstri
⊢
A
⊆
R
∨
ℋ
A
∨
ℋ
C
92
89
91
jctil
⊢
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
∧
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
∧
C
∩
B
∩
D
∩
B
⊆
R
∧
R
⊆
D
∩
B
→
A
⊆
R
∨
ℋ
A
∨
ℋ
C
∧
A
⊆
D
93
ssin
⊢
A
⊆
R
∨
ℋ
A
∨
ℋ
C
∧
A
⊆
D
↔
A
⊆
R
∨
ℋ
A
∨
ℋ
C
∩
D
94
92
93
sylib
⊢
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
∧
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
∧
C
∩
B
∩
D
∩
B
⊆
R
∧
R
⊆
D
∩
B
→
A
⊆
R
∨
ℋ
A
∨
ℋ
C
∩
D
95
44
78
chub1i
⊢
R
∨
ℋ
A
⊆
R
∨
ℋ
A
∨
ℋ
C
∩
D
96
23
95
sstri
⊢
A
⊆
R
∨
ℋ
A
∨
ℋ
C
∩
D
97
94
96
jctir
⊢
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
∧
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
∧
C
∩
B
∩
D
∩
B
⊆
R
∧
R
⊆
D
∩
B
→
A
⊆
R
∨
ℋ
A
∨
ℋ
C
∩
D
∧
A
⊆
R
∨
ℋ
A
∨
ℋ
C
∩
D
98
ssin
⊢
A
⊆
R
∨
ℋ
A
∨
ℋ
C
∩
D
∧
A
⊆
R
∨
ℋ
A
∨
ℋ
C
∩
D
↔
A
⊆
R
∨
ℋ
A
∨
ℋ
C
∩
D
∩
R
∨
ℋ
A
∨
ℋ
C
∩
D
99
97
98
sylib
⊢
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
∧
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
∧
C
∩
B
∩
D
∩
B
⊆
R
∧
R
⊆
D
∩
B
→
A
⊆
R
∨
ℋ
A
∨
ℋ
C
∩
D
∩
R
∨
ℋ
A
∨
ℋ
C
∩
D
100
inss2
⊢
R
∨
ℋ
A
∨
ℋ
C
∩
D
⊆
D
101
sstr
⊢
R
∨
ℋ
A
∨
ℋ
C
∩
D
⊆
D
∧
D
⊆
A
∨
ℋ
B
→
R
∨
ℋ
A
∨
ℋ
C
∩
D
⊆
A
∨
ℋ
B
102
100
101
mpan
⊢
D
⊆
A
∨
ℋ
B
→
R
∨
ℋ
A
∨
ℋ
C
∩
D
⊆
A
∨
ℋ
B
103
102
ad2antll
⊢
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
→
R
∨
ℋ
A
∨
ℋ
C
∩
D
⊆
A
∨
ℋ
B
104
103
ad2antlr
⊢
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
∧
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
∧
C
∩
B
∩
D
∩
B
⊆
R
∧
R
⊆
D
∩
B
→
R
∨
ℋ
A
∨
ℋ
C
∩
D
⊆
A
∨
ℋ
B
105
104
80
jca
⊢
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
∧
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
∧
C
∩
B
∩
D
∩
B
⊆
R
∧
R
⊆
D
∩
B
→
R
∨
ℋ
A
∨
ℋ
C
∩
D
⊆
A
∨
ℋ
B
∧
R
∨
ℋ
A
∨
ℋ
C
∩
D
⊆
A
∨
ℋ
B
106
44
3
chjcli
⊢
R
∨
ℋ
A
∨
ℋ
C
∈
C
ℋ
107
106
4
chincli
⊢
R
∨
ℋ
A
∨
ℋ
C
∩
D
∈
C
ℋ
108
44
78
chjcli
⊢
R
∨
ℋ
A
∨
ℋ
C
∩
D
∈
C
ℋ
109
107
108
38
chlubi
⊢
R
∨
ℋ
A
∨
ℋ
C
∩
D
⊆
A
∨
ℋ
B
∧
R
∨
ℋ
A
∨
ℋ
C
∩
D
⊆
A
∨
ℋ
B
↔
R
∨
ℋ
A
∨
ℋ
C
∩
D
∨
ℋ
R
∨
ℋ
A
∨
ℋ
C
∩
D
⊆
A
∨
ℋ
B
110
105
109
sylib
⊢
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
∧
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
∧
C
∩
B
∩
D
∩
B
⊆
R
∧
R
⊆
D
∩
B
→
R
∨
ℋ
A
∨
ℋ
C
∩
D
∨
ℋ
R
∨
ℋ
A
∨
ℋ
C
∩
D
⊆
A
∨
ℋ
B
111
1
2
107
108
mdslle1i
⊢
B
𝑀
ℋ
*
A
∧
A
⊆
R
∨
ℋ
A
∨
ℋ
C
∩
D
∩
R
∨
ℋ
A
∨
ℋ
C
∩
D
∧
R
∨
ℋ
A
∨
ℋ
C
∩
D
∨
ℋ
R
∨
ℋ
A
∨
ℋ
C
∩
D
⊆
A
∨
ℋ
B
→
R
∨
ℋ
A
∨
ℋ
C
∩
D
⊆
R
∨
ℋ
A
∨
ℋ
C
∩
D
↔
R
∨
ℋ
A
∨
ℋ
C
∩
D
∩
B
⊆
R
∨
ℋ
A
∨
ℋ
C
∩
D
∩
B
112
87
99
110
111
syl3anc
⊢
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
∧
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
∧
C
∩
B
∩
D
∩
B
⊆
R
∧
R
⊆
D
∩
B
→
R
∨
ℋ
A
∨
ℋ
C
∩
D
⊆
R
∨
ℋ
A
∨
ℋ
C
∩
D
↔
R
∨
ℋ
A
∨
ℋ
C
∩
D
∩
B
⊆
R
∨
ℋ
A
∨
ℋ
C
∩
D
∩
B
113
86
112
bitr4d
⊢
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
∧
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
∧
C
∩
B
∩
D
∩
B
⊆
R
∧
R
⊆
D
∩
B
→
R
∨
ℋ
C
∩
B
∩
D
∩
B
⊆
R
∨
ℋ
C
∩
B
∩
D
∩
B
↔
R
∨
ℋ
A
∨
ℋ
C
∩
D
⊆
R
∨
ℋ
A
∨
ℋ
C
∩
D
114
113
exbiri
⊢
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
∧
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
→
C
∩
B
∩
D
∩
B
⊆
R
∧
R
⊆
D
∩
B
→
R
∨
ℋ
A
∨
ℋ
C
∩
D
⊆
R
∨
ℋ
A
∨
ℋ
C
∩
D
→
R
∨
ℋ
C
∩
B
∩
D
∩
B
⊆
R
∨
ℋ
C
∩
B
∩
D
∩
B
115
114
a2d
⊢
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
∧
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
→
C
∩
B
∩
D
∩
B
⊆
R
∧
R
⊆
D
∩
B
→
R
∨
ℋ
A
∨
ℋ
C
∩
D
⊆
R
∨
ℋ
A
∨
ℋ
C
∩
D
→
C
∩
B
∩
D
∩
B
⊆
R
∧
R
⊆
D
∩
B
→
R
∨
ℋ
C
∩
B
∩
D
∩
B
⊆
R
∨
ℋ
C
∩
B
∩
D
∩
B
116
19
115
syld
⊢
A
𝑀
ℋ
B
∧
B
𝑀
ℋ
*
A
∧
A
⊆
C
∧
A
⊆
D
∧
C
⊆
A
∨
ℋ
B
∧
D
⊆
A
∨
ℋ
B
→
R
∨
ℋ
A
⊆
D
→
R
∨
ℋ
A
∨
ℋ
C
∩
D
⊆
R
∨
ℋ
A
∨
ℋ
C
∩
D
→
C
∩
B
∩
D
∩
B
⊆
R
∧
R
⊆
D
∩
B
→
R
∨
ℋ
C
∩
B
∩
D
∩
B
⊆
R
∨
ℋ
C
∩
B
∩
D
∩
B