Metamath Proof Explorer


Theorem mdslmd1lem1

Description: Lemma for mdslmd1i . (Contributed by NM, 29-Apr-2006) (New usage is discouraged.)

Ref Expression
Hypotheses mdslmd.1 AC
mdslmd.2 BC
mdslmd.3 CC
mdslmd.4 DC
mdslmd1lem.5 RC
Assertion mdslmd1lem1 A𝑀BB𝑀*AACADCABDABRADRACDRACDCBDBRRDBRCBDBRCBDB

Proof

Step Hyp Ref Expression
1 mdslmd.1 AC
2 mdslmd.2 BC
3 mdslmd.3 CC
4 mdslmd.4 DC
5 mdslmd1lem.5 RC
6 4 2 chincli DBC
7 5 6 1 chlej1i RDBRADBA
8 simpr A𝑀BB𝑀*AB𝑀*A
9 simpr ACADAD
10 simpr CABDABDAB
11 1 2 4 3pm3.2i ACBCDC
12 dmdsl3 ACBCDCB𝑀*AADDABDBA=D
13 11 12 mpan B𝑀*AADDABDBA=D
14 8 9 10 13 syl3an A𝑀BB𝑀*AACADCABDABDBA=D
15 14 3expb A𝑀BB𝑀*AACADCABDABDBA=D
16 15 sseq2d A𝑀BB𝑀*AACADCABDABRADBARAD
17 7 16 imbitrid A𝑀BB𝑀*AACADCABDABRDBRAD
18 17 adantld A𝑀BB𝑀*AACADCABDABCBDBRRDBRAD
19 18 imim1d A𝑀BB𝑀*AACADCABDABRADRACDRACDCBDBRRDBRACDRACD
20 simpll A𝑀BB𝑀*AACADCABDABCBDBRRDBA𝑀BB𝑀*A
21 simpll ACADCABDABAC
22 21 ad2antlr A𝑀BB𝑀*AACADCABDABCBDBRRDBAC
23 1 5 chub2i ARA
24 22 23 jctil A𝑀BB𝑀*AACADCABDABCBDBRRDBARAAC
25 ssin ARAACARAC
26 24 25 sylib A𝑀BB𝑀*AACADCABDABCBDBRRDBARAC
27 inss1 DBD
28 sstr RDBDBDRD
29 27 28 mpan2 RDBRD
30 sstr RDDABRAB
31 29 30 sylan RDBDABRAB
32 31 ancoms DABRDBRAB
33 32 adantll CABDABRDBRAB
34 33 adantll ACADCABDABRDBRAB
35 34 ad2ant2l A𝑀BB𝑀*AACADCABDABCBDBRRDBRAB
36 1 2 chub1i AAB
37 35 36 jctir A𝑀BB𝑀*AACADCABDABCBDBRRDBRABAAB
38 1 2 chjcli ABC
39 5 1 38 chlubi RABAABRAAB
40 37 39 sylib A𝑀BB𝑀*AACADCABDABCBDBRRDBRAAB
41 simprrl A𝑀BB𝑀*AACADCABDABCAB
42 41 adantr A𝑀BB𝑀*AACADCABDABCBDBRRDBCAB
43 40 42 jca A𝑀BB𝑀*AACADCABDABCBDBRRDBRAABCAB
44 5 1 chjcli RAC
45 44 3 38 chlubi RAABCABRACAB
46 43 45 sylib A𝑀BB𝑀*AACADCABDABCBDBRRDBRACAB
47 1 2 44 3 mdslj1i A𝑀BB𝑀*AARACRACABRACB=RABCB
48 20 26 46 47 syl12anc A𝑀BB𝑀*AACADCABDABCBDBRRDBRACB=RABCB
49 simplll A𝑀BB𝑀*AACADCABDABCBDBRRDBA𝑀B
50 simplrl A𝑀BB𝑀*AACADCABDABCBDBRRDBACAD
51 ssin ACADACD
52 50 51 sylib A𝑀BB𝑀*AACADCABDABCBDBRRDBACD
53 52 ssrind A𝑀BB𝑀*AACADCABDABCBDBRRDBABCDB
54 inindir CDB=CBDB
55 53 54 sseqtrdi A𝑀BB𝑀*AACADCABDABCBDBRRDBABCBDB
56 simprl A𝑀BB𝑀*AACADCABDABCBDBRRDBCBDBR
57 55 56 sstrd A𝑀BB𝑀*AACADCABDABCBDBRRDBABR
58 inss2 DBB
59 sstr RDBDBBRB
60 58 59 mpan2 RDBRB
61 60 ad2antll A𝑀BB𝑀*AACADCABDABCBDBRRDBRB
62 1 2 5 3pm3.2i ACBCRC
63 mdsl3 ACBCRCA𝑀BABRRBRAB=R
64 62 63 mpan A𝑀BABRRBRAB=R
65 49 57 61 64 syl3anc A𝑀BB𝑀*AACADCABDABCBDBRRDBRAB=R
66 65 oveq1d A𝑀BB𝑀*AACADCABDABCBDBRRDBRABCB=RCB
67 48 66 eqtr2d A𝑀BB𝑀*AACADCABDABCBDBRRDBRCB=RACB
68 67 ineq1d A𝑀BB𝑀*AACADCABDABCBDBRRDBRCBDB=RACBDB
69 inindir RACDB=RACBDB
70 68 69 eqtr4di A𝑀BB𝑀*AACADCABDABCBDBRRDBRCBDB=RACDB
71 52 23 jctil A𝑀BB𝑀*AACADCABDABCBDBRRDBARAACD
72 ssin ARAACDARACD
73 71 72 sylib A𝑀BB𝑀*AACADCABDABCBDBRRDBARACD
74 ssinss1 CABCDAB
75 74 ad2antrl ACADCABDABCDAB
76 75 ad2antlr A𝑀BB𝑀*AACADCABDABCBDBRRDBCDAB
77 40 76 jca A𝑀BB𝑀*AACADCABDABCBDBRRDBRAABCDAB
78 3 4 chincli CDC
79 44 78 38 chlubi RAABCDABRACDAB
80 77 79 sylib A𝑀BB𝑀*AACADCABDABCBDBRRDBRACDAB
81 1 2 44 78 mdslj1i A𝑀BB𝑀*AARACDRACDABRACDB=RABCDB
82 20 73 80 81 syl12anc A𝑀BB𝑀*AACADCABDABCBDBRRDBRACDB=RABCDB
83 54 a1i A𝑀BB𝑀*AACADCABDABCBDBRRDBCDB=CBDB
84 65 83 oveq12d A𝑀BB𝑀*AACADCABDABCBDBRRDBRABCDB=RCBDB
85 82 84 eqtr2d A𝑀BB𝑀*AACADCABDABCBDBRRDBRCBDB=RACDB
86 70 85 sseq12d A𝑀BB𝑀*AACADCABDABCBDBRRDBRCBDBRCBDBRACDBRACDB
87 simpllr A𝑀BB𝑀*AACADCABDABCBDBRRDBB𝑀*A
88 simplr ACADCABDABAD
89 88 ad2antlr A𝑀BB𝑀*AACADCABDABCBDBRRDBAD
90 44 3 chub1i RARAC
91 23 90 sstri ARAC
92 89 91 jctil A𝑀BB𝑀*AACADCABDABCBDBRRDBARACAD
93 ssin ARACADARACD
94 92 93 sylib A𝑀BB𝑀*AACADCABDABCBDBRRDBARACD
95 44 78 chub1i RARACD
96 23 95 sstri ARACD
97 94 96 jctir A𝑀BB𝑀*AACADCABDABCBDBRRDBARACDARACD
98 ssin ARACDARACDARACDRACD
99 97 98 sylib A𝑀BB𝑀*AACADCABDABCBDBRRDBARACDRACD
100 inss2 RACDD
101 sstr RACDDDABRACDAB
102 100 101 mpan DABRACDAB
103 102 ad2antll ACADCABDABRACDAB
104 103 ad2antlr A𝑀BB𝑀*AACADCABDABCBDBRRDBRACDAB
105 104 80 jca A𝑀BB𝑀*AACADCABDABCBDBRRDBRACDABRACDAB
106 44 3 chjcli RACC
107 106 4 chincli RACDC
108 44 78 chjcli RACDC
109 107 108 38 chlubi RACDABRACDABRACDRACDAB
110 105 109 sylib A𝑀BB𝑀*AACADCABDABCBDBRRDBRACDRACDAB
111 1 2 107 108 mdslle1i B𝑀*AARACDRACDRACDRACDABRACDRACDRACDBRACDB
112 87 99 110 111 syl3anc A𝑀BB𝑀*AACADCABDABCBDBRRDBRACDRACDRACDBRACDB
113 86 112 bitr4d A𝑀BB𝑀*AACADCABDABCBDBRRDBRCBDBRCBDBRACDRACD
114 113 exbiri A𝑀BB𝑀*AACADCABDABCBDBRRDBRACDRACDRCBDBRCBDB
115 114 a2d A𝑀BB𝑀*AACADCABDABCBDBRRDBRACDRACDCBDBRRDBRCBDBRCBDB
116 19 115 syld A𝑀BB𝑀*AACADCABDABRADRACDRACDCBDBRRDBRCBDBRCBDB