| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cxpcn2.j |
|- J = ( TopOpen ` CCfld ) |
| 2 |
|
cxpcn2.k |
|- K = ( J |`t RR+ ) |
| 3 |
1
|
cnfldtopon |
|- J e. ( TopOn ` CC ) |
| 4 |
|
rpcn |
|- ( x e. RR+ -> x e. CC ) |
| 5 |
|
ax-1 |
|- ( x e. RR+ -> ( x e. RR -> x e. RR+ ) ) |
| 6 |
|
eqid |
|- ( CC \ ( -oo (,] 0 ) ) = ( CC \ ( -oo (,] 0 ) ) |
| 7 |
6
|
ellogdm |
|- ( x e. ( CC \ ( -oo (,] 0 ) ) <-> ( x e. CC /\ ( x e. RR -> x e. RR+ ) ) ) |
| 8 |
4 5 7
|
sylanbrc |
|- ( x e. RR+ -> x e. ( CC \ ( -oo (,] 0 ) ) ) |
| 9 |
8
|
ssriv |
|- RR+ C_ ( CC \ ( -oo (,] 0 ) ) |
| 10 |
|
cnex |
|- CC e. _V |
| 11 |
10
|
difexi |
|- ( CC \ ( -oo (,] 0 ) ) e. _V |
| 12 |
|
restabs |
|- ( ( J e. ( TopOn ` CC ) /\ RR+ C_ ( CC \ ( -oo (,] 0 ) ) /\ ( CC \ ( -oo (,] 0 ) ) e. _V ) -> ( ( J |`t ( CC \ ( -oo (,] 0 ) ) ) |`t RR+ ) = ( J |`t RR+ ) ) |
| 13 |
3 9 11 12
|
mp3an |
|- ( ( J |`t ( CC \ ( -oo (,] 0 ) ) ) |`t RR+ ) = ( J |`t RR+ ) |
| 14 |
2 13
|
eqtr4i |
|- K = ( ( J |`t ( CC \ ( -oo (,] 0 ) ) ) |`t RR+ ) |
| 15 |
3
|
a1i |
|- ( T. -> J e. ( TopOn ` CC ) ) |
| 16 |
|
difss |
|- ( CC \ ( -oo (,] 0 ) ) C_ CC |
| 17 |
|
resttopon |
|- ( ( J e. ( TopOn ` CC ) /\ ( CC \ ( -oo (,] 0 ) ) C_ CC ) -> ( J |`t ( CC \ ( -oo (,] 0 ) ) ) e. ( TopOn ` ( CC \ ( -oo (,] 0 ) ) ) ) |
| 18 |
15 16 17
|
sylancl |
|- ( T. -> ( J |`t ( CC \ ( -oo (,] 0 ) ) ) e. ( TopOn ` ( CC \ ( -oo (,] 0 ) ) ) ) |
| 19 |
9
|
a1i |
|- ( T. -> RR+ C_ ( CC \ ( -oo (,] 0 ) ) ) |
| 20 |
3
|
toponrestid |
|- J = ( J |`t CC ) |
| 21 |
|
ssidd |
|- ( T. -> CC C_ CC ) |
| 22 |
|
eqid |
|- ( J |`t ( CC \ ( -oo (,] 0 ) ) ) = ( J |`t ( CC \ ( -oo (,] 0 ) ) ) |
| 23 |
6 1 22
|
cxpcn |
|- ( x e. ( CC \ ( -oo (,] 0 ) ) , y e. CC |-> ( x ^c y ) ) e. ( ( ( J |`t ( CC \ ( -oo (,] 0 ) ) ) tX J ) Cn J ) |
| 24 |
23
|
a1i |
|- ( T. -> ( x e. ( CC \ ( -oo (,] 0 ) ) , y e. CC |-> ( x ^c y ) ) e. ( ( ( J |`t ( CC \ ( -oo (,] 0 ) ) ) tX J ) Cn J ) ) |
| 25 |
14 18 19 20 15 21 24
|
cnmpt2res |
|- ( T. -> ( x e. RR+ , y e. CC |-> ( x ^c y ) ) e. ( ( K tX J ) Cn J ) ) |
| 26 |
25
|
mptru |
|- ( x e. RR+ , y e. CC |-> ( x ^c y ) ) e. ( ( K tX J ) Cn J ) |