| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cxpcn3.d |
|- D = ( `' Re " RR+ ) |
| 2 |
|
cxpcn3.j |
|- J = ( TopOpen ` CCfld ) |
| 3 |
|
cxpcn3.k |
|- K = ( J |`t ( 0 [,) +oo ) ) |
| 4 |
|
cxpcn3.l |
|- L = ( J |`t D ) |
| 5 |
|
cxpcn3.u |
|- U = ( if ( ( Re ` A ) <_ 1 , ( Re ` A ) , 1 ) / 2 ) |
| 6 |
|
cxpcn3.t |
|- T = if ( U <_ ( E ^c ( 1 / U ) ) , U , ( E ^c ( 1 / U ) ) ) |
| 7 |
1
|
eleq2i |
|- ( A e. D <-> A e. ( `' Re " RR+ ) ) |
| 8 |
|
ref |
|- Re : CC --> RR |
| 9 |
|
ffn |
|- ( Re : CC --> RR -> Re Fn CC ) |
| 10 |
|
elpreima |
|- ( Re Fn CC -> ( A e. ( `' Re " RR+ ) <-> ( A e. CC /\ ( Re ` A ) e. RR+ ) ) ) |
| 11 |
8 9 10
|
mp2b |
|- ( A e. ( `' Re " RR+ ) <-> ( A e. CC /\ ( Re ` A ) e. RR+ ) ) |
| 12 |
7 11
|
bitri |
|- ( A e. D <-> ( A e. CC /\ ( Re ` A ) e. RR+ ) ) |
| 13 |
12
|
simprbi |
|- ( A e. D -> ( Re ` A ) e. RR+ ) |
| 14 |
13
|
adantr |
|- ( ( A e. D /\ E e. RR+ ) -> ( Re ` A ) e. RR+ ) |
| 15 |
|
1rp |
|- 1 e. RR+ |
| 16 |
|
ifcl |
|- ( ( ( Re ` A ) e. RR+ /\ 1 e. RR+ ) -> if ( ( Re ` A ) <_ 1 , ( Re ` A ) , 1 ) e. RR+ ) |
| 17 |
14 15 16
|
sylancl |
|- ( ( A e. D /\ E e. RR+ ) -> if ( ( Re ` A ) <_ 1 , ( Re ` A ) , 1 ) e. RR+ ) |
| 18 |
17
|
rphalfcld |
|- ( ( A e. D /\ E e. RR+ ) -> ( if ( ( Re ` A ) <_ 1 , ( Re ` A ) , 1 ) / 2 ) e. RR+ ) |
| 19 |
5 18
|
eqeltrid |
|- ( ( A e. D /\ E e. RR+ ) -> U e. RR+ ) |
| 20 |
|
simpr |
|- ( ( A e. D /\ E e. RR+ ) -> E e. RR+ ) |
| 21 |
19
|
rpreccld |
|- ( ( A e. D /\ E e. RR+ ) -> ( 1 / U ) e. RR+ ) |
| 22 |
21
|
rpred |
|- ( ( A e. D /\ E e. RR+ ) -> ( 1 / U ) e. RR ) |
| 23 |
20 22
|
rpcxpcld |
|- ( ( A e. D /\ E e. RR+ ) -> ( E ^c ( 1 / U ) ) e. RR+ ) |
| 24 |
19 23
|
ifcld |
|- ( ( A e. D /\ E e. RR+ ) -> if ( U <_ ( E ^c ( 1 / U ) ) , U , ( E ^c ( 1 / U ) ) ) e. RR+ ) |
| 25 |
6 24
|
eqeltrid |
|- ( ( A e. D /\ E e. RR+ ) -> T e. RR+ ) |
| 26 |
|
elrege0 |
|- ( a e. ( 0 [,) +oo ) <-> ( a e. RR /\ 0 <_ a ) ) |
| 27 |
|
0red |
|- ( ( A e. D /\ E e. RR+ ) -> 0 e. RR ) |
| 28 |
|
leloe |
|- ( ( 0 e. RR /\ a e. RR ) -> ( 0 <_ a <-> ( 0 < a \/ 0 = a ) ) ) |
| 29 |
27 28
|
sylan |
|- ( ( ( A e. D /\ E e. RR+ ) /\ a e. RR ) -> ( 0 <_ a <-> ( 0 < a \/ 0 = a ) ) ) |
| 30 |
|
elrp |
|- ( a e. RR+ <-> ( a e. RR /\ 0 < a ) ) |
| 31 |
|
simp2l |
|- ( ( ( A e. D /\ E e. RR+ ) /\ ( a e. RR+ /\ b e. D ) /\ ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) ) -> a e. RR+ ) |
| 32 |
|
simp2r |
|- ( ( ( A e. D /\ E e. RR+ ) /\ ( a e. RR+ /\ b e. D ) /\ ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) ) -> b e. D ) |
| 33 |
|
cnvimass |
|- ( `' Re " RR+ ) C_ dom Re |
| 34 |
8
|
fdmi |
|- dom Re = CC |
| 35 |
33 34
|
sseqtri |
|- ( `' Re " RR+ ) C_ CC |
| 36 |
1 35
|
eqsstri |
|- D C_ CC |
| 37 |
36
|
sseli |
|- ( b e. D -> b e. CC ) |
| 38 |
32 37
|
syl |
|- ( ( ( A e. D /\ E e. RR+ ) /\ ( a e. RR+ /\ b e. D ) /\ ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) ) -> b e. CC ) |
| 39 |
|
abscxp |
|- ( ( a e. RR+ /\ b e. CC ) -> ( abs ` ( a ^c b ) ) = ( a ^c ( Re ` b ) ) ) |
| 40 |
31 38 39
|
syl2anc |
|- ( ( ( A e. D /\ E e. RR+ ) /\ ( a e. RR+ /\ b e. D ) /\ ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) ) -> ( abs ` ( a ^c b ) ) = ( a ^c ( Re ` b ) ) ) |
| 41 |
38
|
recld |
|- ( ( ( A e. D /\ E e. RR+ ) /\ ( a e. RR+ /\ b e. D ) /\ ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) ) -> ( Re ` b ) e. RR ) |
| 42 |
31 41
|
rpcxpcld |
|- ( ( ( A e. D /\ E e. RR+ ) /\ ( a e. RR+ /\ b e. D ) /\ ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) ) -> ( a ^c ( Re ` b ) ) e. RR+ ) |
| 43 |
42
|
rpred |
|- ( ( ( A e. D /\ E e. RR+ ) /\ ( a e. RR+ /\ b e. D ) /\ ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) ) -> ( a ^c ( Re ` b ) ) e. RR ) |
| 44 |
19
|
3ad2ant1 |
|- ( ( ( A e. D /\ E e. RR+ ) /\ ( a e. RR+ /\ b e. D ) /\ ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) ) -> U e. RR+ ) |
| 45 |
44
|
rpred |
|- ( ( ( A e. D /\ E e. RR+ ) /\ ( a e. RR+ /\ b e. D ) /\ ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) ) -> U e. RR ) |
| 46 |
31 45
|
rpcxpcld |
|- ( ( ( A e. D /\ E e. RR+ ) /\ ( a e. RR+ /\ b e. D ) /\ ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) ) -> ( a ^c U ) e. RR+ ) |
| 47 |
46
|
rpred |
|- ( ( ( A e. D /\ E e. RR+ ) /\ ( a e. RR+ /\ b e. D ) /\ ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) ) -> ( a ^c U ) e. RR ) |
| 48 |
|
simp1r |
|- ( ( ( A e. D /\ E e. RR+ ) /\ ( a e. RR+ /\ b e. D ) /\ ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) ) -> E e. RR+ ) |
| 49 |
48
|
rpred |
|- ( ( ( A e. D /\ E e. RR+ ) /\ ( a e. RR+ /\ b e. D ) /\ ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) ) -> E e. RR ) |
| 50 |
|
simp1l |
|- ( ( ( A e. D /\ E e. RR+ ) /\ ( a e. RR+ /\ b e. D ) /\ ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) ) -> A e. D ) |
| 51 |
12
|
simplbi |
|- ( A e. D -> A e. CC ) |
| 52 |
50 51
|
syl |
|- ( ( ( A e. D /\ E e. RR+ ) /\ ( a e. RR+ /\ b e. D ) /\ ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) ) -> A e. CC ) |
| 53 |
52
|
recld |
|- ( ( ( A e. D /\ E e. RR+ ) /\ ( a e. RR+ /\ b e. D ) /\ ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) ) -> ( Re ` A ) e. RR ) |
| 54 |
53
|
rehalfcld |
|- ( ( ( A e. D /\ E e. RR+ ) /\ ( a e. RR+ /\ b e. D ) /\ ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) ) -> ( ( Re ` A ) / 2 ) e. RR ) |
| 55 |
|
1re |
|- 1 e. RR |
| 56 |
|
min1 |
|- ( ( ( Re ` A ) e. RR /\ 1 e. RR ) -> if ( ( Re ` A ) <_ 1 , ( Re ` A ) , 1 ) <_ ( Re ` A ) ) |
| 57 |
53 55 56
|
sylancl |
|- ( ( ( A e. D /\ E e. RR+ ) /\ ( a e. RR+ /\ b e. D ) /\ ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) ) -> if ( ( Re ` A ) <_ 1 , ( Re ` A ) , 1 ) <_ ( Re ` A ) ) |
| 58 |
17
|
3ad2ant1 |
|- ( ( ( A e. D /\ E e. RR+ ) /\ ( a e. RR+ /\ b e. D ) /\ ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) ) -> if ( ( Re ` A ) <_ 1 , ( Re ` A ) , 1 ) e. RR+ ) |
| 59 |
58
|
rpred |
|- ( ( ( A e. D /\ E e. RR+ ) /\ ( a e. RR+ /\ b e. D ) /\ ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) ) -> if ( ( Re ` A ) <_ 1 , ( Re ` A ) , 1 ) e. RR ) |
| 60 |
|
2re |
|- 2 e. RR |
| 61 |
60
|
a1i |
|- ( ( ( A e. D /\ E e. RR+ ) /\ ( a e. RR+ /\ b e. D ) /\ ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) ) -> 2 e. RR ) |
| 62 |
|
2pos |
|- 0 < 2 |
| 63 |
62
|
a1i |
|- ( ( ( A e. D /\ E e. RR+ ) /\ ( a e. RR+ /\ b e. D ) /\ ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) ) -> 0 < 2 ) |
| 64 |
|
lediv1 |
|- ( ( if ( ( Re ` A ) <_ 1 , ( Re ` A ) , 1 ) e. RR /\ ( Re ` A ) e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( if ( ( Re ` A ) <_ 1 , ( Re ` A ) , 1 ) <_ ( Re ` A ) <-> ( if ( ( Re ` A ) <_ 1 , ( Re ` A ) , 1 ) / 2 ) <_ ( ( Re ` A ) / 2 ) ) ) |
| 65 |
59 53 61 63 64
|
syl112anc |
|- ( ( ( A e. D /\ E e. RR+ ) /\ ( a e. RR+ /\ b e. D ) /\ ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) ) -> ( if ( ( Re ` A ) <_ 1 , ( Re ` A ) , 1 ) <_ ( Re ` A ) <-> ( if ( ( Re ` A ) <_ 1 , ( Re ` A ) , 1 ) / 2 ) <_ ( ( Re ` A ) / 2 ) ) ) |
| 66 |
57 65
|
mpbid |
|- ( ( ( A e. D /\ E e. RR+ ) /\ ( a e. RR+ /\ b e. D ) /\ ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) ) -> ( if ( ( Re ` A ) <_ 1 , ( Re ` A ) , 1 ) / 2 ) <_ ( ( Re ` A ) / 2 ) ) |
| 67 |
5 66
|
eqbrtrid |
|- ( ( ( A e. D /\ E e. RR+ ) /\ ( a e. RR+ /\ b e. D ) /\ ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) ) -> U <_ ( ( Re ` A ) / 2 ) ) |
| 68 |
53
|
recnd |
|- ( ( ( A e. D /\ E e. RR+ ) /\ ( a e. RR+ /\ b e. D ) /\ ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) ) -> ( Re ` A ) e. CC ) |
| 69 |
68
|
2halvesd |
|- ( ( ( A e. D /\ E e. RR+ ) /\ ( a e. RR+ /\ b e. D ) /\ ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) ) -> ( ( ( Re ` A ) / 2 ) + ( ( Re ` A ) / 2 ) ) = ( Re ` A ) ) |
| 70 |
52 38
|
resubd |
|- ( ( ( A e. D /\ E e. RR+ ) /\ ( a e. RR+ /\ b e. D ) /\ ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) ) -> ( Re ` ( A - b ) ) = ( ( Re ` A ) - ( Re ` b ) ) ) |
| 71 |
52 38
|
subcld |
|- ( ( ( A e. D /\ E e. RR+ ) /\ ( a e. RR+ /\ b e. D ) /\ ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) ) -> ( A - b ) e. CC ) |
| 72 |
71
|
recld |
|- ( ( ( A e. D /\ E e. RR+ ) /\ ( a e. RR+ /\ b e. D ) /\ ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) ) -> ( Re ` ( A - b ) ) e. RR ) |
| 73 |
71
|
abscld |
|- ( ( ( A e. D /\ E e. RR+ ) /\ ( a e. RR+ /\ b e. D ) /\ ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) ) -> ( abs ` ( A - b ) ) e. RR ) |
| 74 |
71
|
releabsd |
|- ( ( ( A e. D /\ E e. RR+ ) /\ ( a e. RR+ /\ b e. D ) /\ ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) ) -> ( Re ` ( A - b ) ) <_ ( abs ` ( A - b ) ) ) |
| 75 |
|
simp3r |
|- ( ( ( A e. D /\ E e. RR+ ) /\ ( a e. RR+ /\ b e. D ) /\ ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) ) -> ( abs ` ( A - b ) ) < T ) |
| 76 |
75 6
|
breqtrdi |
|- ( ( ( A e. D /\ E e. RR+ ) /\ ( a e. RR+ /\ b e. D ) /\ ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) ) -> ( abs ` ( A - b ) ) < if ( U <_ ( E ^c ( 1 / U ) ) , U , ( E ^c ( 1 / U ) ) ) ) |
| 77 |
23
|
3ad2ant1 |
|- ( ( ( A e. D /\ E e. RR+ ) /\ ( a e. RR+ /\ b e. D ) /\ ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) ) -> ( E ^c ( 1 / U ) ) e. RR+ ) |
| 78 |
77
|
rpred |
|- ( ( ( A e. D /\ E e. RR+ ) /\ ( a e. RR+ /\ b e. D ) /\ ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) ) -> ( E ^c ( 1 / U ) ) e. RR ) |
| 79 |
|
ltmin |
|- ( ( ( abs ` ( A - b ) ) e. RR /\ U e. RR /\ ( E ^c ( 1 / U ) ) e. RR ) -> ( ( abs ` ( A - b ) ) < if ( U <_ ( E ^c ( 1 / U ) ) , U , ( E ^c ( 1 / U ) ) ) <-> ( ( abs ` ( A - b ) ) < U /\ ( abs ` ( A - b ) ) < ( E ^c ( 1 / U ) ) ) ) ) |
| 80 |
73 45 78 79
|
syl3anc |
|- ( ( ( A e. D /\ E e. RR+ ) /\ ( a e. RR+ /\ b e. D ) /\ ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) ) -> ( ( abs ` ( A - b ) ) < if ( U <_ ( E ^c ( 1 / U ) ) , U , ( E ^c ( 1 / U ) ) ) <-> ( ( abs ` ( A - b ) ) < U /\ ( abs ` ( A - b ) ) < ( E ^c ( 1 / U ) ) ) ) ) |
| 81 |
76 80
|
mpbid |
|- ( ( ( A e. D /\ E e. RR+ ) /\ ( a e. RR+ /\ b e. D ) /\ ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) ) -> ( ( abs ` ( A - b ) ) < U /\ ( abs ` ( A - b ) ) < ( E ^c ( 1 / U ) ) ) ) |
| 82 |
81
|
simpld |
|- ( ( ( A e. D /\ E e. RR+ ) /\ ( a e. RR+ /\ b e. D ) /\ ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) ) -> ( abs ` ( A - b ) ) < U ) |
| 83 |
72 73 45 74 82
|
lelttrd |
|- ( ( ( A e. D /\ E e. RR+ ) /\ ( a e. RR+ /\ b e. D ) /\ ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) ) -> ( Re ` ( A - b ) ) < U ) |
| 84 |
72 45 54 83 67
|
ltletrd |
|- ( ( ( A e. D /\ E e. RR+ ) /\ ( a e. RR+ /\ b e. D ) /\ ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) ) -> ( Re ` ( A - b ) ) < ( ( Re ` A ) / 2 ) ) |
| 85 |
70 84
|
eqbrtrrd |
|- ( ( ( A e. D /\ E e. RR+ ) /\ ( a e. RR+ /\ b e. D ) /\ ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) ) -> ( ( Re ` A ) - ( Re ` b ) ) < ( ( Re ` A ) / 2 ) ) |
| 86 |
53 41 54
|
ltsubadd2d |
|- ( ( ( A e. D /\ E e. RR+ ) /\ ( a e. RR+ /\ b e. D ) /\ ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) ) -> ( ( ( Re ` A ) - ( Re ` b ) ) < ( ( Re ` A ) / 2 ) <-> ( Re ` A ) < ( ( Re ` b ) + ( ( Re ` A ) / 2 ) ) ) ) |
| 87 |
85 86
|
mpbid |
|- ( ( ( A e. D /\ E e. RR+ ) /\ ( a e. RR+ /\ b e. D ) /\ ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) ) -> ( Re ` A ) < ( ( Re ` b ) + ( ( Re ` A ) / 2 ) ) ) |
| 88 |
69 87
|
eqbrtrd |
|- ( ( ( A e. D /\ E e. RR+ ) /\ ( a e. RR+ /\ b e. D ) /\ ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) ) -> ( ( ( Re ` A ) / 2 ) + ( ( Re ` A ) / 2 ) ) < ( ( Re ` b ) + ( ( Re ` A ) / 2 ) ) ) |
| 89 |
54 41 54
|
ltadd1d |
|- ( ( ( A e. D /\ E e. RR+ ) /\ ( a e. RR+ /\ b e. D ) /\ ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) ) -> ( ( ( Re ` A ) / 2 ) < ( Re ` b ) <-> ( ( ( Re ` A ) / 2 ) + ( ( Re ` A ) / 2 ) ) < ( ( Re ` b ) + ( ( Re ` A ) / 2 ) ) ) ) |
| 90 |
88 89
|
mpbird |
|- ( ( ( A e. D /\ E e. RR+ ) /\ ( a e. RR+ /\ b e. D ) /\ ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) ) -> ( ( Re ` A ) / 2 ) < ( Re ` b ) ) |
| 91 |
45 54 41 67 90
|
lelttrd |
|- ( ( ( A e. D /\ E e. RR+ ) /\ ( a e. RR+ /\ b e. D ) /\ ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) ) -> U < ( Re ` b ) ) |
| 92 |
31
|
rpred |
|- ( ( ( A e. D /\ E e. RR+ ) /\ ( a e. RR+ /\ b e. D ) /\ ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) ) -> a e. RR ) |
| 93 |
55
|
a1i |
|- ( ( ( A e. D /\ E e. RR+ ) /\ ( a e. RR+ /\ b e. D ) /\ ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) ) -> 1 e. RR ) |
| 94 |
31
|
rprege0d |
|- ( ( ( A e. D /\ E e. RR+ ) /\ ( a e. RR+ /\ b e. D ) /\ ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) ) -> ( a e. RR /\ 0 <_ a ) ) |
| 95 |
|
absid |
|- ( ( a e. RR /\ 0 <_ a ) -> ( abs ` a ) = a ) |
| 96 |
94 95
|
syl |
|- ( ( ( A e. D /\ E e. RR+ ) /\ ( a e. RR+ /\ b e. D ) /\ ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) ) -> ( abs ` a ) = a ) |
| 97 |
|
simp3l |
|- ( ( ( A e. D /\ E e. RR+ ) /\ ( a e. RR+ /\ b e. D ) /\ ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) ) -> ( abs ` a ) < T ) |
| 98 |
96 97
|
eqbrtrrd |
|- ( ( ( A e. D /\ E e. RR+ ) /\ ( a e. RR+ /\ b e. D ) /\ ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) ) -> a < T ) |
| 99 |
98 6
|
breqtrdi |
|- ( ( ( A e. D /\ E e. RR+ ) /\ ( a e. RR+ /\ b e. D ) /\ ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) ) -> a < if ( U <_ ( E ^c ( 1 / U ) ) , U , ( E ^c ( 1 / U ) ) ) ) |
| 100 |
|
ltmin |
|- ( ( a e. RR /\ U e. RR /\ ( E ^c ( 1 / U ) ) e. RR ) -> ( a < if ( U <_ ( E ^c ( 1 / U ) ) , U , ( E ^c ( 1 / U ) ) ) <-> ( a < U /\ a < ( E ^c ( 1 / U ) ) ) ) ) |
| 101 |
92 45 78 100
|
syl3anc |
|- ( ( ( A e. D /\ E e. RR+ ) /\ ( a e. RR+ /\ b e. D ) /\ ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) ) -> ( a < if ( U <_ ( E ^c ( 1 / U ) ) , U , ( E ^c ( 1 / U ) ) ) <-> ( a < U /\ a < ( E ^c ( 1 / U ) ) ) ) ) |
| 102 |
99 101
|
mpbid |
|- ( ( ( A e. D /\ E e. RR+ ) /\ ( a e. RR+ /\ b e. D ) /\ ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) ) -> ( a < U /\ a < ( E ^c ( 1 / U ) ) ) ) |
| 103 |
102
|
simpld |
|- ( ( ( A e. D /\ E e. RR+ ) /\ ( a e. RR+ /\ b e. D ) /\ ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) ) -> a < U ) |
| 104 |
|
rehalfcl |
|- ( 1 e. RR -> ( 1 / 2 ) e. RR ) |
| 105 |
55 104
|
mp1i |
|- ( ( ( A e. D /\ E e. RR+ ) /\ ( a e. RR+ /\ b e. D ) /\ ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) ) -> ( 1 / 2 ) e. RR ) |
| 106 |
|
min2 |
|- ( ( ( Re ` A ) e. RR /\ 1 e. RR ) -> if ( ( Re ` A ) <_ 1 , ( Re ` A ) , 1 ) <_ 1 ) |
| 107 |
53 55 106
|
sylancl |
|- ( ( ( A e. D /\ E e. RR+ ) /\ ( a e. RR+ /\ b e. D ) /\ ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) ) -> if ( ( Re ` A ) <_ 1 , ( Re ` A ) , 1 ) <_ 1 ) |
| 108 |
|
lediv1 |
|- ( ( if ( ( Re ` A ) <_ 1 , ( Re ` A ) , 1 ) e. RR /\ 1 e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( if ( ( Re ` A ) <_ 1 , ( Re ` A ) , 1 ) <_ 1 <-> ( if ( ( Re ` A ) <_ 1 , ( Re ` A ) , 1 ) / 2 ) <_ ( 1 / 2 ) ) ) |
| 109 |
59 93 61 63 108
|
syl112anc |
|- ( ( ( A e. D /\ E e. RR+ ) /\ ( a e. RR+ /\ b e. D ) /\ ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) ) -> ( if ( ( Re ` A ) <_ 1 , ( Re ` A ) , 1 ) <_ 1 <-> ( if ( ( Re ` A ) <_ 1 , ( Re ` A ) , 1 ) / 2 ) <_ ( 1 / 2 ) ) ) |
| 110 |
107 109
|
mpbid |
|- ( ( ( A e. D /\ E e. RR+ ) /\ ( a e. RR+ /\ b e. D ) /\ ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) ) -> ( if ( ( Re ` A ) <_ 1 , ( Re ` A ) , 1 ) / 2 ) <_ ( 1 / 2 ) ) |
| 111 |
5 110
|
eqbrtrid |
|- ( ( ( A e. D /\ E e. RR+ ) /\ ( a e. RR+ /\ b e. D ) /\ ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) ) -> U <_ ( 1 / 2 ) ) |
| 112 |
|
halflt1 |
|- ( 1 / 2 ) < 1 |
| 113 |
112
|
a1i |
|- ( ( ( A e. D /\ E e. RR+ ) /\ ( a e. RR+ /\ b e. D ) /\ ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) ) -> ( 1 / 2 ) < 1 ) |
| 114 |
45 105 93 111 113
|
lelttrd |
|- ( ( ( A e. D /\ E e. RR+ ) /\ ( a e. RR+ /\ b e. D ) /\ ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) ) -> U < 1 ) |
| 115 |
92 45 93 103 114
|
lttrd |
|- ( ( ( A e. D /\ E e. RR+ ) /\ ( a e. RR+ /\ b e. D ) /\ ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) ) -> a < 1 ) |
| 116 |
31 45 115 41
|
cxplt3d |
|- ( ( ( A e. D /\ E e. RR+ ) /\ ( a e. RR+ /\ b e. D ) /\ ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) ) -> ( U < ( Re ` b ) <-> ( a ^c ( Re ` b ) ) < ( a ^c U ) ) ) |
| 117 |
91 116
|
mpbid |
|- ( ( ( A e. D /\ E e. RR+ ) /\ ( a e. RR+ /\ b e. D ) /\ ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) ) -> ( a ^c ( Re ` b ) ) < ( a ^c U ) ) |
| 118 |
44
|
rpcnne0d |
|- ( ( ( A e. D /\ E e. RR+ ) /\ ( a e. RR+ /\ b e. D ) /\ ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) ) -> ( U e. CC /\ U =/= 0 ) ) |
| 119 |
|
recid |
|- ( ( U e. CC /\ U =/= 0 ) -> ( U x. ( 1 / U ) ) = 1 ) |
| 120 |
118 119
|
syl |
|- ( ( ( A e. D /\ E e. RR+ ) /\ ( a e. RR+ /\ b e. D ) /\ ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) ) -> ( U x. ( 1 / U ) ) = 1 ) |
| 121 |
120
|
oveq2d |
|- ( ( ( A e. D /\ E e. RR+ ) /\ ( a e. RR+ /\ b e. D ) /\ ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) ) -> ( a ^c ( U x. ( 1 / U ) ) ) = ( a ^c 1 ) ) |
| 122 |
44
|
rpreccld |
|- ( ( ( A e. D /\ E e. RR+ ) /\ ( a e. RR+ /\ b e. D ) /\ ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) ) -> ( 1 / U ) e. RR+ ) |
| 123 |
122
|
rpcnd |
|- ( ( ( A e. D /\ E e. RR+ ) /\ ( a e. RR+ /\ b e. D ) /\ ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) ) -> ( 1 / U ) e. CC ) |
| 124 |
31 45 123
|
cxpmuld |
|- ( ( ( A e. D /\ E e. RR+ ) /\ ( a e. RR+ /\ b e. D ) /\ ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) ) -> ( a ^c ( U x. ( 1 / U ) ) ) = ( ( a ^c U ) ^c ( 1 / U ) ) ) |
| 125 |
31
|
rpcnd |
|- ( ( ( A e. D /\ E e. RR+ ) /\ ( a e. RR+ /\ b e. D ) /\ ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) ) -> a e. CC ) |
| 126 |
125
|
cxp1d |
|- ( ( ( A e. D /\ E e. RR+ ) /\ ( a e. RR+ /\ b e. D ) /\ ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) ) -> ( a ^c 1 ) = a ) |
| 127 |
121 124 126
|
3eqtr3d |
|- ( ( ( A e. D /\ E e. RR+ ) /\ ( a e. RR+ /\ b e. D ) /\ ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) ) -> ( ( a ^c U ) ^c ( 1 / U ) ) = a ) |
| 128 |
102
|
simprd |
|- ( ( ( A e. D /\ E e. RR+ ) /\ ( a e. RR+ /\ b e. D ) /\ ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) ) -> a < ( E ^c ( 1 / U ) ) ) |
| 129 |
127 128
|
eqbrtrd |
|- ( ( ( A e. D /\ E e. RR+ ) /\ ( a e. RR+ /\ b e. D ) /\ ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) ) -> ( ( a ^c U ) ^c ( 1 / U ) ) < ( E ^c ( 1 / U ) ) ) |
| 130 |
46
|
rprege0d |
|- ( ( ( A e. D /\ E e. RR+ ) /\ ( a e. RR+ /\ b e. D ) /\ ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) ) -> ( ( a ^c U ) e. RR /\ 0 <_ ( a ^c U ) ) ) |
| 131 |
48
|
rprege0d |
|- ( ( ( A e. D /\ E e. RR+ ) /\ ( a e. RR+ /\ b e. D ) /\ ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) ) -> ( E e. RR /\ 0 <_ E ) ) |
| 132 |
|
cxplt2 |
|- ( ( ( ( a ^c U ) e. RR /\ 0 <_ ( a ^c U ) ) /\ ( E e. RR /\ 0 <_ E ) /\ ( 1 / U ) e. RR+ ) -> ( ( a ^c U ) < E <-> ( ( a ^c U ) ^c ( 1 / U ) ) < ( E ^c ( 1 / U ) ) ) ) |
| 133 |
130 131 122 132
|
syl3anc |
|- ( ( ( A e. D /\ E e. RR+ ) /\ ( a e. RR+ /\ b e. D ) /\ ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) ) -> ( ( a ^c U ) < E <-> ( ( a ^c U ) ^c ( 1 / U ) ) < ( E ^c ( 1 / U ) ) ) ) |
| 134 |
129 133
|
mpbird |
|- ( ( ( A e. D /\ E e. RR+ ) /\ ( a e. RR+ /\ b e. D ) /\ ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) ) -> ( a ^c U ) < E ) |
| 135 |
43 47 49 117 134
|
lttrd |
|- ( ( ( A e. D /\ E e. RR+ ) /\ ( a e. RR+ /\ b e. D ) /\ ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) ) -> ( a ^c ( Re ` b ) ) < E ) |
| 136 |
40 135
|
eqbrtrd |
|- ( ( ( A e. D /\ E e. RR+ ) /\ ( a e. RR+ /\ b e. D ) /\ ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) ) -> ( abs ` ( a ^c b ) ) < E ) |
| 137 |
136
|
3expia |
|- ( ( ( A e. D /\ E e. RR+ ) /\ ( a e. RR+ /\ b e. D ) ) -> ( ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) -> ( abs ` ( a ^c b ) ) < E ) ) |
| 138 |
137
|
anassrs |
|- ( ( ( ( A e. D /\ E e. RR+ ) /\ a e. RR+ ) /\ b e. D ) -> ( ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) -> ( abs ` ( a ^c b ) ) < E ) ) |
| 139 |
138
|
ralrimiva |
|- ( ( ( A e. D /\ E e. RR+ ) /\ a e. RR+ ) -> A. b e. D ( ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) -> ( abs ` ( a ^c b ) ) < E ) ) |
| 140 |
30 139
|
sylan2br |
|- ( ( ( A e. D /\ E e. RR+ ) /\ ( a e. RR /\ 0 < a ) ) -> A. b e. D ( ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) -> ( abs ` ( a ^c b ) ) < E ) ) |
| 141 |
140
|
expr |
|- ( ( ( A e. D /\ E e. RR+ ) /\ a e. RR ) -> ( 0 < a -> A. b e. D ( ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) -> ( abs ` ( a ^c b ) ) < E ) ) ) |
| 142 |
|
elpreima |
|- ( Re Fn CC -> ( b e. ( `' Re " RR+ ) <-> ( b e. CC /\ ( Re ` b ) e. RR+ ) ) ) |
| 143 |
8 9 142
|
mp2b |
|- ( b e. ( `' Re " RR+ ) <-> ( b e. CC /\ ( Re ` b ) e. RR+ ) ) |
| 144 |
143
|
simprbi |
|- ( b e. ( `' Re " RR+ ) -> ( Re ` b ) e. RR+ ) |
| 145 |
144 1
|
eleq2s |
|- ( b e. D -> ( Re ` b ) e. RR+ ) |
| 146 |
145
|
rpne0d |
|- ( b e. D -> ( Re ` b ) =/= 0 ) |
| 147 |
|
fveq2 |
|- ( b = 0 -> ( Re ` b ) = ( Re ` 0 ) ) |
| 148 |
|
re0 |
|- ( Re ` 0 ) = 0 |
| 149 |
147 148
|
eqtrdi |
|- ( b = 0 -> ( Re ` b ) = 0 ) |
| 150 |
149
|
necon3i |
|- ( ( Re ` b ) =/= 0 -> b =/= 0 ) |
| 151 |
146 150
|
syl |
|- ( b e. D -> b =/= 0 ) |
| 152 |
37 151
|
0cxpd |
|- ( b e. D -> ( 0 ^c b ) = 0 ) |
| 153 |
152
|
adantl |
|- ( ( ( ( A e. D /\ E e. RR+ ) /\ a e. RR ) /\ b e. D ) -> ( 0 ^c b ) = 0 ) |
| 154 |
153
|
abs00bd |
|- ( ( ( ( A e. D /\ E e. RR+ ) /\ a e. RR ) /\ b e. D ) -> ( abs ` ( 0 ^c b ) ) = 0 ) |
| 155 |
|
simpllr |
|- ( ( ( ( A e. D /\ E e. RR+ ) /\ a e. RR ) /\ b e. D ) -> E e. RR+ ) |
| 156 |
155
|
rpgt0d |
|- ( ( ( ( A e. D /\ E e. RR+ ) /\ a e. RR ) /\ b e. D ) -> 0 < E ) |
| 157 |
154 156
|
eqbrtrd |
|- ( ( ( ( A e. D /\ E e. RR+ ) /\ a e. RR ) /\ b e. D ) -> ( abs ` ( 0 ^c b ) ) < E ) |
| 158 |
|
fvoveq1 |
|- ( 0 = a -> ( abs ` ( 0 ^c b ) ) = ( abs ` ( a ^c b ) ) ) |
| 159 |
158
|
breq1d |
|- ( 0 = a -> ( ( abs ` ( 0 ^c b ) ) < E <-> ( abs ` ( a ^c b ) ) < E ) ) |
| 160 |
157 159
|
syl5ibcom |
|- ( ( ( ( A e. D /\ E e. RR+ ) /\ a e. RR ) /\ b e. D ) -> ( 0 = a -> ( abs ` ( a ^c b ) ) < E ) ) |
| 161 |
160
|
a1dd |
|- ( ( ( ( A e. D /\ E e. RR+ ) /\ a e. RR ) /\ b e. D ) -> ( 0 = a -> ( ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) -> ( abs ` ( a ^c b ) ) < E ) ) ) |
| 162 |
161
|
ralrimdva |
|- ( ( ( A e. D /\ E e. RR+ ) /\ a e. RR ) -> ( 0 = a -> A. b e. D ( ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) -> ( abs ` ( a ^c b ) ) < E ) ) ) |
| 163 |
141 162
|
jaod |
|- ( ( ( A e. D /\ E e. RR+ ) /\ a e. RR ) -> ( ( 0 < a \/ 0 = a ) -> A. b e. D ( ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) -> ( abs ` ( a ^c b ) ) < E ) ) ) |
| 164 |
29 163
|
sylbid |
|- ( ( ( A e. D /\ E e. RR+ ) /\ a e. RR ) -> ( 0 <_ a -> A. b e. D ( ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) -> ( abs ` ( a ^c b ) ) < E ) ) ) |
| 165 |
164
|
expimpd |
|- ( ( A e. D /\ E e. RR+ ) -> ( ( a e. RR /\ 0 <_ a ) -> A. b e. D ( ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) -> ( abs ` ( a ^c b ) ) < E ) ) ) |
| 166 |
26 165
|
biimtrid |
|- ( ( A e. D /\ E e. RR+ ) -> ( a e. ( 0 [,) +oo ) -> A. b e. D ( ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) -> ( abs ` ( a ^c b ) ) < E ) ) ) |
| 167 |
166
|
ralrimiv |
|- ( ( A e. D /\ E e. RR+ ) -> A. a e. ( 0 [,) +oo ) A. b e. D ( ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) -> ( abs ` ( a ^c b ) ) < E ) ) |
| 168 |
|
breq2 |
|- ( d = T -> ( ( abs ` a ) < d <-> ( abs ` a ) < T ) ) |
| 169 |
|
breq2 |
|- ( d = T -> ( ( abs ` ( A - b ) ) < d <-> ( abs ` ( A - b ) ) < T ) ) |
| 170 |
168 169
|
anbi12d |
|- ( d = T -> ( ( ( abs ` a ) < d /\ ( abs ` ( A - b ) ) < d ) <-> ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) ) ) |
| 171 |
170
|
imbi1d |
|- ( d = T -> ( ( ( ( abs ` a ) < d /\ ( abs ` ( A - b ) ) < d ) -> ( abs ` ( a ^c b ) ) < E ) <-> ( ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) -> ( abs ` ( a ^c b ) ) < E ) ) ) |
| 172 |
171
|
2ralbidv |
|- ( d = T -> ( A. a e. ( 0 [,) +oo ) A. b e. D ( ( ( abs ` a ) < d /\ ( abs ` ( A - b ) ) < d ) -> ( abs ` ( a ^c b ) ) < E ) <-> A. a e. ( 0 [,) +oo ) A. b e. D ( ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) -> ( abs ` ( a ^c b ) ) < E ) ) ) |
| 173 |
172
|
rspcev |
|- ( ( T e. RR+ /\ A. a e. ( 0 [,) +oo ) A. b e. D ( ( ( abs ` a ) < T /\ ( abs ` ( A - b ) ) < T ) -> ( abs ` ( a ^c b ) ) < E ) ) -> E. d e. RR+ A. a e. ( 0 [,) +oo ) A. b e. D ( ( ( abs ` a ) < d /\ ( abs ` ( A - b ) ) < d ) -> ( abs ` ( a ^c b ) ) < E ) ) |
| 174 |
25 167 173
|
syl2anc |
|- ( ( A e. D /\ E e. RR+ ) -> E. d e. RR+ A. a e. ( 0 [,) +oo ) A. b e. D ( ( ( abs ` a ) < d /\ ( abs ` ( A - b ) ) < d ) -> ( abs ` ( a ^c b ) ) < E ) ) |