| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cxpcn3.d |
⊢ 𝐷 = ( ◡ ℜ “ ℝ+ ) |
| 2 |
|
cxpcn3.j |
⊢ 𝐽 = ( TopOpen ‘ ℂfld ) |
| 3 |
|
cxpcn3.k |
⊢ 𝐾 = ( 𝐽 ↾t ( 0 [,) +∞ ) ) |
| 4 |
|
cxpcn3.l |
⊢ 𝐿 = ( 𝐽 ↾t 𝐷 ) |
| 5 |
|
cxpcn3.u |
⊢ 𝑈 = ( if ( ( ℜ ‘ 𝐴 ) ≤ 1 , ( ℜ ‘ 𝐴 ) , 1 ) / 2 ) |
| 6 |
|
cxpcn3.t |
⊢ 𝑇 = if ( 𝑈 ≤ ( 𝐸 ↑𝑐 ( 1 / 𝑈 ) ) , 𝑈 , ( 𝐸 ↑𝑐 ( 1 / 𝑈 ) ) ) |
| 7 |
1
|
eleq2i |
⊢ ( 𝐴 ∈ 𝐷 ↔ 𝐴 ∈ ( ◡ ℜ “ ℝ+ ) ) |
| 8 |
|
ref |
⊢ ℜ : ℂ ⟶ ℝ |
| 9 |
|
ffn |
⊢ ( ℜ : ℂ ⟶ ℝ → ℜ Fn ℂ ) |
| 10 |
|
elpreima |
⊢ ( ℜ Fn ℂ → ( 𝐴 ∈ ( ◡ ℜ “ ℝ+ ) ↔ ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ℝ+ ) ) ) |
| 11 |
8 9 10
|
mp2b |
⊢ ( 𝐴 ∈ ( ◡ ℜ “ ℝ+ ) ↔ ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ℝ+ ) ) |
| 12 |
7 11
|
bitri |
⊢ ( 𝐴 ∈ 𝐷 ↔ ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ℝ+ ) ) |
| 13 |
12
|
simprbi |
⊢ ( 𝐴 ∈ 𝐷 → ( ℜ ‘ 𝐴 ) ∈ ℝ+ ) |
| 14 |
13
|
adantr |
⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) → ( ℜ ‘ 𝐴 ) ∈ ℝ+ ) |
| 15 |
|
1rp |
⊢ 1 ∈ ℝ+ |
| 16 |
|
ifcl |
⊢ ( ( ( ℜ ‘ 𝐴 ) ∈ ℝ+ ∧ 1 ∈ ℝ+ ) → if ( ( ℜ ‘ 𝐴 ) ≤ 1 , ( ℜ ‘ 𝐴 ) , 1 ) ∈ ℝ+ ) |
| 17 |
14 15 16
|
sylancl |
⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) → if ( ( ℜ ‘ 𝐴 ) ≤ 1 , ( ℜ ‘ 𝐴 ) , 1 ) ∈ ℝ+ ) |
| 18 |
17
|
rphalfcld |
⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) → ( if ( ( ℜ ‘ 𝐴 ) ≤ 1 , ( ℜ ‘ 𝐴 ) , 1 ) / 2 ) ∈ ℝ+ ) |
| 19 |
5 18
|
eqeltrid |
⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) → 𝑈 ∈ ℝ+ ) |
| 20 |
|
simpr |
⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) → 𝐸 ∈ ℝ+ ) |
| 21 |
19
|
rpreccld |
⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) → ( 1 / 𝑈 ) ∈ ℝ+ ) |
| 22 |
21
|
rpred |
⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) → ( 1 / 𝑈 ) ∈ ℝ ) |
| 23 |
20 22
|
rpcxpcld |
⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) → ( 𝐸 ↑𝑐 ( 1 / 𝑈 ) ) ∈ ℝ+ ) |
| 24 |
19 23
|
ifcld |
⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) → if ( 𝑈 ≤ ( 𝐸 ↑𝑐 ( 1 / 𝑈 ) ) , 𝑈 , ( 𝐸 ↑𝑐 ( 1 / 𝑈 ) ) ) ∈ ℝ+ ) |
| 25 |
6 24
|
eqeltrid |
⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) → 𝑇 ∈ ℝ+ ) |
| 26 |
|
elrege0 |
⊢ ( 𝑎 ∈ ( 0 [,) +∞ ) ↔ ( 𝑎 ∈ ℝ ∧ 0 ≤ 𝑎 ) ) |
| 27 |
|
0red |
⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) → 0 ∈ ℝ ) |
| 28 |
|
leloe |
⊢ ( ( 0 ∈ ℝ ∧ 𝑎 ∈ ℝ ) → ( 0 ≤ 𝑎 ↔ ( 0 < 𝑎 ∨ 0 = 𝑎 ) ) ) |
| 29 |
27 28
|
sylan |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ 𝑎 ∈ ℝ ) → ( 0 ≤ 𝑎 ↔ ( 0 < 𝑎 ∨ 0 = 𝑎 ) ) ) |
| 30 |
|
elrp |
⊢ ( 𝑎 ∈ ℝ+ ↔ ( 𝑎 ∈ ℝ ∧ 0 < 𝑎 ) ) |
| 31 |
|
simp2l |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ 𝐷 ) ∧ ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) ) → 𝑎 ∈ ℝ+ ) |
| 32 |
|
simp2r |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ 𝐷 ) ∧ ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) ) → 𝑏 ∈ 𝐷 ) |
| 33 |
|
cnvimass |
⊢ ( ◡ ℜ “ ℝ+ ) ⊆ dom ℜ |
| 34 |
8
|
fdmi |
⊢ dom ℜ = ℂ |
| 35 |
33 34
|
sseqtri |
⊢ ( ◡ ℜ “ ℝ+ ) ⊆ ℂ |
| 36 |
1 35
|
eqsstri |
⊢ 𝐷 ⊆ ℂ |
| 37 |
36
|
sseli |
⊢ ( 𝑏 ∈ 𝐷 → 𝑏 ∈ ℂ ) |
| 38 |
32 37
|
syl |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ 𝐷 ) ∧ ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) ) → 𝑏 ∈ ℂ ) |
| 39 |
|
abscxp |
⊢ ( ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℂ ) → ( abs ‘ ( 𝑎 ↑𝑐 𝑏 ) ) = ( 𝑎 ↑𝑐 ( ℜ ‘ 𝑏 ) ) ) |
| 40 |
31 38 39
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ 𝐷 ) ∧ ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) ) → ( abs ‘ ( 𝑎 ↑𝑐 𝑏 ) ) = ( 𝑎 ↑𝑐 ( ℜ ‘ 𝑏 ) ) ) |
| 41 |
38
|
recld |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ 𝐷 ) ∧ ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) ) → ( ℜ ‘ 𝑏 ) ∈ ℝ ) |
| 42 |
31 41
|
rpcxpcld |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ 𝐷 ) ∧ ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) ) → ( 𝑎 ↑𝑐 ( ℜ ‘ 𝑏 ) ) ∈ ℝ+ ) |
| 43 |
42
|
rpred |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ 𝐷 ) ∧ ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) ) → ( 𝑎 ↑𝑐 ( ℜ ‘ 𝑏 ) ) ∈ ℝ ) |
| 44 |
19
|
3ad2ant1 |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ 𝐷 ) ∧ ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) ) → 𝑈 ∈ ℝ+ ) |
| 45 |
44
|
rpred |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ 𝐷 ) ∧ ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) ) → 𝑈 ∈ ℝ ) |
| 46 |
31 45
|
rpcxpcld |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ 𝐷 ) ∧ ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) ) → ( 𝑎 ↑𝑐 𝑈 ) ∈ ℝ+ ) |
| 47 |
46
|
rpred |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ 𝐷 ) ∧ ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) ) → ( 𝑎 ↑𝑐 𝑈 ) ∈ ℝ ) |
| 48 |
|
simp1r |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ 𝐷 ) ∧ ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) ) → 𝐸 ∈ ℝ+ ) |
| 49 |
48
|
rpred |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ 𝐷 ) ∧ ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) ) → 𝐸 ∈ ℝ ) |
| 50 |
|
simp1l |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ 𝐷 ) ∧ ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) ) → 𝐴 ∈ 𝐷 ) |
| 51 |
12
|
simplbi |
⊢ ( 𝐴 ∈ 𝐷 → 𝐴 ∈ ℂ ) |
| 52 |
50 51
|
syl |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ 𝐷 ) ∧ ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) ) → 𝐴 ∈ ℂ ) |
| 53 |
52
|
recld |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ 𝐷 ) ∧ ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) ) → ( ℜ ‘ 𝐴 ) ∈ ℝ ) |
| 54 |
53
|
rehalfcld |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ 𝐷 ) ∧ ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) ) → ( ( ℜ ‘ 𝐴 ) / 2 ) ∈ ℝ ) |
| 55 |
|
1re |
⊢ 1 ∈ ℝ |
| 56 |
|
min1 |
⊢ ( ( ( ℜ ‘ 𝐴 ) ∈ ℝ ∧ 1 ∈ ℝ ) → if ( ( ℜ ‘ 𝐴 ) ≤ 1 , ( ℜ ‘ 𝐴 ) , 1 ) ≤ ( ℜ ‘ 𝐴 ) ) |
| 57 |
53 55 56
|
sylancl |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ 𝐷 ) ∧ ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) ) → if ( ( ℜ ‘ 𝐴 ) ≤ 1 , ( ℜ ‘ 𝐴 ) , 1 ) ≤ ( ℜ ‘ 𝐴 ) ) |
| 58 |
17
|
3ad2ant1 |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ 𝐷 ) ∧ ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) ) → if ( ( ℜ ‘ 𝐴 ) ≤ 1 , ( ℜ ‘ 𝐴 ) , 1 ) ∈ ℝ+ ) |
| 59 |
58
|
rpred |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ 𝐷 ) ∧ ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) ) → if ( ( ℜ ‘ 𝐴 ) ≤ 1 , ( ℜ ‘ 𝐴 ) , 1 ) ∈ ℝ ) |
| 60 |
|
2re |
⊢ 2 ∈ ℝ |
| 61 |
60
|
a1i |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ 𝐷 ) ∧ ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) ) → 2 ∈ ℝ ) |
| 62 |
|
2pos |
⊢ 0 < 2 |
| 63 |
62
|
a1i |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ 𝐷 ) ∧ ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) ) → 0 < 2 ) |
| 64 |
|
lediv1 |
⊢ ( ( if ( ( ℜ ‘ 𝐴 ) ≤ 1 , ( ℜ ‘ 𝐴 ) , 1 ) ∈ ℝ ∧ ( ℜ ‘ 𝐴 ) ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( if ( ( ℜ ‘ 𝐴 ) ≤ 1 , ( ℜ ‘ 𝐴 ) , 1 ) ≤ ( ℜ ‘ 𝐴 ) ↔ ( if ( ( ℜ ‘ 𝐴 ) ≤ 1 , ( ℜ ‘ 𝐴 ) , 1 ) / 2 ) ≤ ( ( ℜ ‘ 𝐴 ) / 2 ) ) ) |
| 65 |
59 53 61 63 64
|
syl112anc |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ 𝐷 ) ∧ ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) ) → ( if ( ( ℜ ‘ 𝐴 ) ≤ 1 , ( ℜ ‘ 𝐴 ) , 1 ) ≤ ( ℜ ‘ 𝐴 ) ↔ ( if ( ( ℜ ‘ 𝐴 ) ≤ 1 , ( ℜ ‘ 𝐴 ) , 1 ) / 2 ) ≤ ( ( ℜ ‘ 𝐴 ) / 2 ) ) ) |
| 66 |
57 65
|
mpbid |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ 𝐷 ) ∧ ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) ) → ( if ( ( ℜ ‘ 𝐴 ) ≤ 1 , ( ℜ ‘ 𝐴 ) , 1 ) / 2 ) ≤ ( ( ℜ ‘ 𝐴 ) / 2 ) ) |
| 67 |
5 66
|
eqbrtrid |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ 𝐷 ) ∧ ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) ) → 𝑈 ≤ ( ( ℜ ‘ 𝐴 ) / 2 ) ) |
| 68 |
53
|
recnd |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ 𝐷 ) ∧ ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) ) → ( ℜ ‘ 𝐴 ) ∈ ℂ ) |
| 69 |
68
|
2halvesd |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ 𝐷 ) ∧ ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) ) → ( ( ( ℜ ‘ 𝐴 ) / 2 ) + ( ( ℜ ‘ 𝐴 ) / 2 ) ) = ( ℜ ‘ 𝐴 ) ) |
| 70 |
52 38
|
resubd |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ 𝐷 ) ∧ ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) ) → ( ℜ ‘ ( 𝐴 − 𝑏 ) ) = ( ( ℜ ‘ 𝐴 ) − ( ℜ ‘ 𝑏 ) ) ) |
| 71 |
52 38
|
subcld |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ 𝐷 ) ∧ ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) ) → ( 𝐴 − 𝑏 ) ∈ ℂ ) |
| 72 |
71
|
recld |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ 𝐷 ) ∧ ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) ) → ( ℜ ‘ ( 𝐴 − 𝑏 ) ) ∈ ℝ ) |
| 73 |
71
|
abscld |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ 𝐷 ) ∧ ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) ) → ( abs ‘ ( 𝐴 − 𝑏 ) ) ∈ ℝ ) |
| 74 |
71
|
releabsd |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ 𝐷 ) ∧ ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) ) → ( ℜ ‘ ( 𝐴 − 𝑏 ) ) ≤ ( abs ‘ ( 𝐴 − 𝑏 ) ) ) |
| 75 |
|
simp3r |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ 𝐷 ) ∧ ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) ) → ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) |
| 76 |
75 6
|
breqtrdi |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ 𝐷 ) ∧ ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) ) → ( abs ‘ ( 𝐴 − 𝑏 ) ) < if ( 𝑈 ≤ ( 𝐸 ↑𝑐 ( 1 / 𝑈 ) ) , 𝑈 , ( 𝐸 ↑𝑐 ( 1 / 𝑈 ) ) ) ) |
| 77 |
23
|
3ad2ant1 |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ 𝐷 ) ∧ ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) ) → ( 𝐸 ↑𝑐 ( 1 / 𝑈 ) ) ∈ ℝ+ ) |
| 78 |
77
|
rpred |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ 𝐷 ) ∧ ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) ) → ( 𝐸 ↑𝑐 ( 1 / 𝑈 ) ) ∈ ℝ ) |
| 79 |
|
ltmin |
⊢ ( ( ( abs ‘ ( 𝐴 − 𝑏 ) ) ∈ ℝ ∧ 𝑈 ∈ ℝ ∧ ( 𝐸 ↑𝑐 ( 1 / 𝑈 ) ) ∈ ℝ ) → ( ( abs ‘ ( 𝐴 − 𝑏 ) ) < if ( 𝑈 ≤ ( 𝐸 ↑𝑐 ( 1 / 𝑈 ) ) , 𝑈 , ( 𝐸 ↑𝑐 ( 1 / 𝑈 ) ) ) ↔ ( ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑈 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < ( 𝐸 ↑𝑐 ( 1 / 𝑈 ) ) ) ) ) |
| 80 |
73 45 78 79
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ 𝐷 ) ∧ ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) ) → ( ( abs ‘ ( 𝐴 − 𝑏 ) ) < if ( 𝑈 ≤ ( 𝐸 ↑𝑐 ( 1 / 𝑈 ) ) , 𝑈 , ( 𝐸 ↑𝑐 ( 1 / 𝑈 ) ) ) ↔ ( ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑈 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < ( 𝐸 ↑𝑐 ( 1 / 𝑈 ) ) ) ) ) |
| 81 |
76 80
|
mpbid |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ 𝐷 ) ∧ ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) ) → ( ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑈 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < ( 𝐸 ↑𝑐 ( 1 / 𝑈 ) ) ) ) |
| 82 |
81
|
simpld |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ 𝐷 ) ∧ ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) ) → ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑈 ) |
| 83 |
72 73 45 74 82
|
lelttrd |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ 𝐷 ) ∧ ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) ) → ( ℜ ‘ ( 𝐴 − 𝑏 ) ) < 𝑈 ) |
| 84 |
72 45 54 83 67
|
ltletrd |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ 𝐷 ) ∧ ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) ) → ( ℜ ‘ ( 𝐴 − 𝑏 ) ) < ( ( ℜ ‘ 𝐴 ) / 2 ) ) |
| 85 |
70 84
|
eqbrtrrd |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ 𝐷 ) ∧ ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) ) → ( ( ℜ ‘ 𝐴 ) − ( ℜ ‘ 𝑏 ) ) < ( ( ℜ ‘ 𝐴 ) / 2 ) ) |
| 86 |
53 41 54
|
ltsubadd2d |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ 𝐷 ) ∧ ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) ) → ( ( ( ℜ ‘ 𝐴 ) − ( ℜ ‘ 𝑏 ) ) < ( ( ℜ ‘ 𝐴 ) / 2 ) ↔ ( ℜ ‘ 𝐴 ) < ( ( ℜ ‘ 𝑏 ) + ( ( ℜ ‘ 𝐴 ) / 2 ) ) ) ) |
| 87 |
85 86
|
mpbid |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ 𝐷 ) ∧ ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) ) → ( ℜ ‘ 𝐴 ) < ( ( ℜ ‘ 𝑏 ) + ( ( ℜ ‘ 𝐴 ) / 2 ) ) ) |
| 88 |
69 87
|
eqbrtrd |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ 𝐷 ) ∧ ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) ) → ( ( ( ℜ ‘ 𝐴 ) / 2 ) + ( ( ℜ ‘ 𝐴 ) / 2 ) ) < ( ( ℜ ‘ 𝑏 ) + ( ( ℜ ‘ 𝐴 ) / 2 ) ) ) |
| 89 |
54 41 54
|
ltadd1d |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ 𝐷 ) ∧ ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) ) → ( ( ( ℜ ‘ 𝐴 ) / 2 ) < ( ℜ ‘ 𝑏 ) ↔ ( ( ( ℜ ‘ 𝐴 ) / 2 ) + ( ( ℜ ‘ 𝐴 ) / 2 ) ) < ( ( ℜ ‘ 𝑏 ) + ( ( ℜ ‘ 𝐴 ) / 2 ) ) ) ) |
| 90 |
88 89
|
mpbird |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ 𝐷 ) ∧ ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) ) → ( ( ℜ ‘ 𝐴 ) / 2 ) < ( ℜ ‘ 𝑏 ) ) |
| 91 |
45 54 41 67 90
|
lelttrd |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ 𝐷 ) ∧ ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) ) → 𝑈 < ( ℜ ‘ 𝑏 ) ) |
| 92 |
31
|
rpred |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ 𝐷 ) ∧ ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) ) → 𝑎 ∈ ℝ ) |
| 93 |
55
|
a1i |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ 𝐷 ) ∧ ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) ) → 1 ∈ ℝ ) |
| 94 |
31
|
rprege0d |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ 𝐷 ) ∧ ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) ) → ( 𝑎 ∈ ℝ ∧ 0 ≤ 𝑎 ) ) |
| 95 |
|
absid |
⊢ ( ( 𝑎 ∈ ℝ ∧ 0 ≤ 𝑎 ) → ( abs ‘ 𝑎 ) = 𝑎 ) |
| 96 |
94 95
|
syl |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ 𝐷 ) ∧ ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) ) → ( abs ‘ 𝑎 ) = 𝑎 ) |
| 97 |
|
simp3l |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ 𝐷 ) ∧ ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) ) → ( abs ‘ 𝑎 ) < 𝑇 ) |
| 98 |
96 97
|
eqbrtrrd |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ 𝐷 ) ∧ ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) ) → 𝑎 < 𝑇 ) |
| 99 |
98 6
|
breqtrdi |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ 𝐷 ) ∧ ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) ) → 𝑎 < if ( 𝑈 ≤ ( 𝐸 ↑𝑐 ( 1 / 𝑈 ) ) , 𝑈 , ( 𝐸 ↑𝑐 ( 1 / 𝑈 ) ) ) ) |
| 100 |
|
ltmin |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑈 ∈ ℝ ∧ ( 𝐸 ↑𝑐 ( 1 / 𝑈 ) ) ∈ ℝ ) → ( 𝑎 < if ( 𝑈 ≤ ( 𝐸 ↑𝑐 ( 1 / 𝑈 ) ) , 𝑈 , ( 𝐸 ↑𝑐 ( 1 / 𝑈 ) ) ) ↔ ( 𝑎 < 𝑈 ∧ 𝑎 < ( 𝐸 ↑𝑐 ( 1 / 𝑈 ) ) ) ) ) |
| 101 |
92 45 78 100
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ 𝐷 ) ∧ ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) ) → ( 𝑎 < if ( 𝑈 ≤ ( 𝐸 ↑𝑐 ( 1 / 𝑈 ) ) , 𝑈 , ( 𝐸 ↑𝑐 ( 1 / 𝑈 ) ) ) ↔ ( 𝑎 < 𝑈 ∧ 𝑎 < ( 𝐸 ↑𝑐 ( 1 / 𝑈 ) ) ) ) ) |
| 102 |
99 101
|
mpbid |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ 𝐷 ) ∧ ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) ) → ( 𝑎 < 𝑈 ∧ 𝑎 < ( 𝐸 ↑𝑐 ( 1 / 𝑈 ) ) ) ) |
| 103 |
102
|
simpld |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ 𝐷 ) ∧ ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) ) → 𝑎 < 𝑈 ) |
| 104 |
|
rehalfcl |
⊢ ( 1 ∈ ℝ → ( 1 / 2 ) ∈ ℝ ) |
| 105 |
55 104
|
mp1i |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ 𝐷 ) ∧ ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) ) → ( 1 / 2 ) ∈ ℝ ) |
| 106 |
|
min2 |
⊢ ( ( ( ℜ ‘ 𝐴 ) ∈ ℝ ∧ 1 ∈ ℝ ) → if ( ( ℜ ‘ 𝐴 ) ≤ 1 , ( ℜ ‘ 𝐴 ) , 1 ) ≤ 1 ) |
| 107 |
53 55 106
|
sylancl |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ 𝐷 ) ∧ ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) ) → if ( ( ℜ ‘ 𝐴 ) ≤ 1 , ( ℜ ‘ 𝐴 ) , 1 ) ≤ 1 ) |
| 108 |
|
lediv1 |
⊢ ( ( if ( ( ℜ ‘ 𝐴 ) ≤ 1 , ( ℜ ‘ 𝐴 ) , 1 ) ∈ ℝ ∧ 1 ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( if ( ( ℜ ‘ 𝐴 ) ≤ 1 , ( ℜ ‘ 𝐴 ) , 1 ) ≤ 1 ↔ ( if ( ( ℜ ‘ 𝐴 ) ≤ 1 , ( ℜ ‘ 𝐴 ) , 1 ) / 2 ) ≤ ( 1 / 2 ) ) ) |
| 109 |
59 93 61 63 108
|
syl112anc |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ 𝐷 ) ∧ ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) ) → ( if ( ( ℜ ‘ 𝐴 ) ≤ 1 , ( ℜ ‘ 𝐴 ) , 1 ) ≤ 1 ↔ ( if ( ( ℜ ‘ 𝐴 ) ≤ 1 , ( ℜ ‘ 𝐴 ) , 1 ) / 2 ) ≤ ( 1 / 2 ) ) ) |
| 110 |
107 109
|
mpbid |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ 𝐷 ) ∧ ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) ) → ( if ( ( ℜ ‘ 𝐴 ) ≤ 1 , ( ℜ ‘ 𝐴 ) , 1 ) / 2 ) ≤ ( 1 / 2 ) ) |
| 111 |
5 110
|
eqbrtrid |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ 𝐷 ) ∧ ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) ) → 𝑈 ≤ ( 1 / 2 ) ) |
| 112 |
|
halflt1 |
⊢ ( 1 / 2 ) < 1 |
| 113 |
112
|
a1i |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ 𝐷 ) ∧ ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) ) → ( 1 / 2 ) < 1 ) |
| 114 |
45 105 93 111 113
|
lelttrd |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ 𝐷 ) ∧ ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) ) → 𝑈 < 1 ) |
| 115 |
92 45 93 103 114
|
lttrd |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ 𝐷 ) ∧ ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) ) → 𝑎 < 1 ) |
| 116 |
31 45 115 41
|
cxplt3d |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ 𝐷 ) ∧ ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) ) → ( 𝑈 < ( ℜ ‘ 𝑏 ) ↔ ( 𝑎 ↑𝑐 ( ℜ ‘ 𝑏 ) ) < ( 𝑎 ↑𝑐 𝑈 ) ) ) |
| 117 |
91 116
|
mpbid |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ 𝐷 ) ∧ ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) ) → ( 𝑎 ↑𝑐 ( ℜ ‘ 𝑏 ) ) < ( 𝑎 ↑𝑐 𝑈 ) ) |
| 118 |
44
|
rpcnne0d |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ 𝐷 ) ∧ ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) ) → ( 𝑈 ∈ ℂ ∧ 𝑈 ≠ 0 ) ) |
| 119 |
|
recid |
⊢ ( ( 𝑈 ∈ ℂ ∧ 𝑈 ≠ 0 ) → ( 𝑈 · ( 1 / 𝑈 ) ) = 1 ) |
| 120 |
118 119
|
syl |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ 𝐷 ) ∧ ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) ) → ( 𝑈 · ( 1 / 𝑈 ) ) = 1 ) |
| 121 |
120
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ 𝐷 ) ∧ ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) ) → ( 𝑎 ↑𝑐 ( 𝑈 · ( 1 / 𝑈 ) ) ) = ( 𝑎 ↑𝑐 1 ) ) |
| 122 |
44
|
rpreccld |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ 𝐷 ) ∧ ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) ) → ( 1 / 𝑈 ) ∈ ℝ+ ) |
| 123 |
122
|
rpcnd |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ 𝐷 ) ∧ ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) ) → ( 1 / 𝑈 ) ∈ ℂ ) |
| 124 |
31 45 123
|
cxpmuld |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ 𝐷 ) ∧ ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) ) → ( 𝑎 ↑𝑐 ( 𝑈 · ( 1 / 𝑈 ) ) ) = ( ( 𝑎 ↑𝑐 𝑈 ) ↑𝑐 ( 1 / 𝑈 ) ) ) |
| 125 |
31
|
rpcnd |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ 𝐷 ) ∧ ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) ) → 𝑎 ∈ ℂ ) |
| 126 |
125
|
cxp1d |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ 𝐷 ) ∧ ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) ) → ( 𝑎 ↑𝑐 1 ) = 𝑎 ) |
| 127 |
121 124 126
|
3eqtr3d |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ 𝐷 ) ∧ ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) ) → ( ( 𝑎 ↑𝑐 𝑈 ) ↑𝑐 ( 1 / 𝑈 ) ) = 𝑎 ) |
| 128 |
102
|
simprd |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ 𝐷 ) ∧ ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) ) → 𝑎 < ( 𝐸 ↑𝑐 ( 1 / 𝑈 ) ) ) |
| 129 |
127 128
|
eqbrtrd |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ 𝐷 ) ∧ ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) ) → ( ( 𝑎 ↑𝑐 𝑈 ) ↑𝑐 ( 1 / 𝑈 ) ) < ( 𝐸 ↑𝑐 ( 1 / 𝑈 ) ) ) |
| 130 |
46
|
rprege0d |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ 𝐷 ) ∧ ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) ) → ( ( 𝑎 ↑𝑐 𝑈 ) ∈ ℝ ∧ 0 ≤ ( 𝑎 ↑𝑐 𝑈 ) ) ) |
| 131 |
48
|
rprege0d |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ 𝐷 ) ∧ ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) ) → ( 𝐸 ∈ ℝ ∧ 0 ≤ 𝐸 ) ) |
| 132 |
|
cxplt2 |
⊢ ( ( ( ( 𝑎 ↑𝑐 𝑈 ) ∈ ℝ ∧ 0 ≤ ( 𝑎 ↑𝑐 𝑈 ) ) ∧ ( 𝐸 ∈ ℝ ∧ 0 ≤ 𝐸 ) ∧ ( 1 / 𝑈 ) ∈ ℝ+ ) → ( ( 𝑎 ↑𝑐 𝑈 ) < 𝐸 ↔ ( ( 𝑎 ↑𝑐 𝑈 ) ↑𝑐 ( 1 / 𝑈 ) ) < ( 𝐸 ↑𝑐 ( 1 / 𝑈 ) ) ) ) |
| 133 |
130 131 122 132
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ 𝐷 ) ∧ ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) ) → ( ( 𝑎 ↑𝑐 𝑈 ) < 𝐸 ↔ ( ( 𝑎 ↑𝑐 𝑈 ) ↑𝑐 ( 1 / 𝑈 ) ) < ( 𝐸 ↑𝑐 ( 1 / 𝑈 ) ) ) ) |
| 134 |
129 133
|
mpbird |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ 𝐷 ) ∧ ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) ) → ( 𝑎 ↑𝑐 𝑈 ) < 𝐸 ) |
| 135 |
43 47 49 117 134
|
lttrd |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ 𝐷 ) ∧ ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) ) → ( 𝑎 ↑𝑐 ( ℜ ‘ 𝑏 ) ) < 𝐸 ) |
| 136 |
40 135
|
eqbrtrd |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ 𝐷 ) ∧ ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) ) → ( abs ‘ ( 𝑎 ↑𝑐 𝑏 ) ) < 𝐸 ) |
| 137 |
136
|
3expia |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ 𝐷 ) ) → ( ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) → ( abs ‘ ( 𝑎 ↑𝑐 𝑏 ) ) < 𝐸 ) ) |
| 138 |
137
|
anassrs |
⊢ ( ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝑏 ∈ 𝐷 ) → ( ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) → ( abs ‘ ( 𝑎 ↑𝑐 𝑏 ) ) < 𝐸 ) ) |
| 139 |
138
|
ralrimiva |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ 𝑎 ∈ ℝ+ ) → ∀ 𝑏 ∈ 𝐷 ( ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) → ( abs ‘ ( 𝑎 ↑𝑐 𝑏 ) ) < 𝐸 ) ) |
| 140 |
30 139
|
sylan2br |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 0 < 𝑎 ) ) → ∀ 𝑏 ∈ 𝐷 ( ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) → ( abs ‘ ( 𝑎 ↑𝑐 𝑏 ) ) < 𝐸 ) ) |
| 141 |
140
|
expr |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ 𝑎 ∈ ℝ ) → ( 0 < 𝑎 → ∀ 𝑏 ∈ 𝐷 ( ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) → ( abs ‘ ( 𝑎 ↑𝑐 𝑏 ) ) < 𝐸 ) ) ) |
| 142 |
|
elpreima |
⊢ ( ℜ Fn ℂ → ( 𝑏 ∈ ( ◡ ℜ “ ℝ+ ) ↔ ( 𝑏 ∈ ℂ ∧ ( ℜ ‘ 𝑏 ) ∈ ℝ+ ) ) ) |
| 143 |
8 9 142
|
mp2b |
⊢ ( 𝑏 ∈ ( ◡ ℜ “ ℝ+ ) ↔ ( 𝑏 ∈ ℂ ∧ ( ℜ ‘ 𝑏 ) ∈ ℝ+ ) ) |
| 144 |
143
|
simprbi |
⊢ ( 𝑏 ∈ ( ◡ ℜ “ ℝ+ ) → ( ℜ ‘ 𝑏 ) ∈ ℝ+ ) |
| 145 |
144 1
|
eleq2s |
⊢ ( 𝑏 ∈ 𝐷 → ( ℜ ‘ 𝑏 ) ∈ ℝ+ ) |
| 146 |
145
|
rpne0d |
⊢ ( 𝑏 ∈ 𝐷 → ( ℜ ‘ 𝑏 ) ≠ 0 ) |
| 147 |
|
fveq2 |
⊢ ( 𝑏 = 0 → ( ℜ ‘ 𝑏 ) = ( ℜ ‘ 0 ) ) |
| 148 |
|
re0 |
⊢ ( ℜ ‘ 0 ) = 0 |
| 149 |
147 148
|
eqtrdi |
⊢ ( 𝑏 = 0 → ( ℜ ‘ 𝑏 ) = 0 ) |
| 150 |
149
|
necon3i |
⊢ ( ( ℜ ‘ 𝑏 ) ≠ 0 → 𝑏 ≠ 0 ) |
| 151 |
146 150
|
syl |
⊢ ( 𝑏 ∈ 𝐷 → 𝑏 ≠ 0 ) |
| 152 |
37 151
|
0cxpd |
⊢ ( 𝑏 ∈ 𝐷 → ( 0 ↑𝑐 𝑏 ) = 0 ) |
| 153 |
152
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ 𝑎 ∈ ℝ ) ∧ 𝑏 ∈ 𝐷 ) → ( 0 ↑𝑐 𝑏 ) = 0 ) |
| 154 |
153
|
abs00bd |
⊢ ( ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ 𝑎 ∈ ℝ ) ∧ 𝑏 ∈ 𝐷 ) → ( abs ‘ ( 0 ↑𝑐 𝑏 ) ) = 0 ) |
| 155 |
|
simpllr |
⊢ ( ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ 𝑎 ∈ ℝ ) ∧ 𝑏 ∈ 𝐷 ) → 𝐸 ∈ ℝ+ ) |
| 156 |
155
|
rpgt0d |
⊢ ( ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ 𝑎 ∈ ℝ ) ∧ 𝑏 ∈ 𝐷 ) → 0 < 𝐸 ) |
| 157 |
154 156
|
eqbrtrd |
⊢ ( ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ 𝑎 ∈ ℝ ) ∧ 𝑏 ∈ 𝐷 ) → ( abs ‘ ( 0 ↑𝑐 𝑏 ) ) < 𝐸 ) |
| 158 |
|
fvoveq1 |
⊢ ( 0 = 𝑎 → ( abs ‘ ( 0 ↑𝑐 𝑏 ) ) = ( abs ‘ ( 𝑎 ↑𝑐 𝑏 ) ) ) |
| 159 |
158
|
breq1d |
⊢ ( 0 = 𝑎 → ( ( abs ‘ ( 0 ↑𝑐 𝑏 ) ) < 𝐸 ↔ ( abs ‘ ( 𝑎 ↑𝑐 𝑏 ) ) < 𝐸 ) ) |
| 160 |
157 159
|
syl5ibcom |
⊢ ( ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ 𝑎 ∈ ℝ ) ∧ 𝑏 ∈ 𝐷 ) → ( 0 = 𝑎 → ( abs ‘ ( 𝑎 ↑𝑐 𝑏 ) ) < 𝐸 ) ) |
| 161 |
160
|
a1dd |
⊢ ( ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ 𝑎 ∈ ℝ ) ∧ 𝑏 ∈ 𝐷 ) → ( 0 = 𝑎 → ( ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) → ( abs ‘ ( 𝑎 ↑𝑐 𝑏 ) ) < 𝐸 ) ) ) |
| 162 |
161
|
ralrimdva |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ 𝑎 ∈ ℝ ) → ( 0 = 𝑎 → ∀ 𝑏 ∈ 𝐷 ( ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) → ( abs ‘ ( 𝑎 ↑𝑐 𝑏 ) ) < 𝐸 ) ) ) |
| 163 |
141 162
|
jaod |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ 𝑎 ∈ ℝ ) → ( ( 0 < 𝑎 ∨ 0 = 𝑎 ) → ∀ 𝑏 ∈ 𝐷 ( ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) → ( abs ‘ ( 𝑎 ↑𝑐 𝑏 ) ) < 𝐸 ) ) ) |
| 164 |
29 163
|
sylbid |
⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) ∧ 𝑎 ∈ ℝ ) → ( 0 ≤ 𝑎 → ∀ 𝑏 ∈ 𝐷 ( ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) → ( abs ‘ ( 𝑎 ↑𝑐 𝑏 ) ) < 𝐸 ) ) ) |
| 165 |
164
|
expimpd |
⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) → ( ( 𝑎 ∈ ℝ ∧ 0 ≤ 𝑎 ) → ∀ 𝑏 ∈ 𝐷 ( ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) → ( abs ‘ ( 𝑎 ↑𝑐 𝑏 ) ) < 𝐸 ) ) ) |
| 166 |
26 165
|
biimtrid |
⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) → ( 𝑎 ∈ ( 0 [,) +∞ ) → ∀ 𝑏 ∈ 𝐷 ( ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) → ( abs ‘ ( 𝑎 ↑𝑐 𝑏 ) ) < 𝐸 ) ) ) |
| 167 |
166
|
ralrimiv |
⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) → ∀ 𝑎 ∈ ( 0 [,) +∞ ) ∀ 𝑏 ∈ 𝐷 ( ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) → ( abs ‘ ( 𝑎 ↑𝑐 𝑏 ) ) < 𝐸 ) ) |
| 168 |
|
breq2 |
⊢ ( 𝑑 = 𝑇 → ( ( abs ‘ 𝑎 ) < 𝑑 ↔ ( abs ‘ 𝑎 ) < 𝑇 ) ) |
| 169 |
|
breq2 |
⊢ ( 𝑑 = 𝑇 → ( ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑑 ↔ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) ) |
| 170 |
168 169
|
anbi12d |
⊢ ( 𝑑 = 𝑇 → ( ( ( abs ‘ 𝑎 ) < 𝑑 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑑 ) ↔ ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) ) ) |
| 171 |
170
|
imbi1d |
⊢ ( 𝑑 = 𝑇 → ( ( ( ( abs ‘ 𝑎 ) < 𝑑 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑑 ) → ( abs ‘ ( 𝑎 ↑𝑐 𝑏 ) ) < 𝐸 ) ↔ ( ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) → ( abs ‘ ( 𝑎 ↑𝑐 𝑏 ) ) < 𝐸 ) ) ) |
| 172 |
171
|
2ralbidv |
⊢ ( 𝑑 = 𝑇 → ( ∀ 𝑎 ∈ ( 0 [,) +∞ ) ∀ 𝑏 ∈ 𝐷 ( ( ( abs ‘ 𝑎 ) < 𝑑 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑑 ) → ( abs ‘ ( 𝑎 ↑𝑐 𝑏 ) ) < 𝐸 ) ↔ ∀ 𝑎 ∈ ( 0 [,) +∞ ) ∀ 𝑏 ∈ 𝐷 ( ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) → ( abs ‘ ( 𝑎 ↑𝑐 𝑏 ) ) < 𝐸 ) ) ) |
| 173 |
172
|
rspcev |
⊢ ( ( 𝑇 ∈ ℝ+ ∧ ∀ 𝑎 ∈ ( 0 [,) +∞ ) ∀ 𝑏 ∈ 𝐷 ( ( ( abs ‘ 𝑎 ) < 𝑇 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑇 ) → ( abs ‘ ( 𝑎 ↑𝑐 𝑏 ) ) < 𝐸 ) ) → ∃ 𝑑 ∈ ℝ+ ∀ 𝑎 ∈ ( 0 [,) +∞ ) ∀ 𝑏 ∈ 𝐷 ( ( ( abs ‘ 𝑎 ) < 𝑑 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑑 ) → ( abs ‘ ( 𝑎 ↑𝑐 𝑏 ) ) < 𝐸 ) ) |
| 174 |
25 167 173
|
syl2anc |
⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+ ) → ∃ 𝑑 ∈ ℝ+ ∀ 𝑎 ∈ ( 0 [,) +∞ ) ∀ 𝑏 ∈ 𝐷 ( ( ( abs ‘ 𝑎 ) < 𝑑 ∧ ( abs ‘ ( 𝐴 − 𝑏 ) ) < 𝑑 ) → ( abs ‘ ( 𝑎 ↑𝑐 𝑏 ) ) < 𝐸 ) ) |