Step |
Hyp |
Ref |
Expression |
1 |
|
cxpcn2.j |
⊢ 𝐽 = ( TopOpen ‘ ℂfld ) |
2 |
|
cxpcn2.k |
⊢ 𝐾 = ( 𝐽 ↾t ℝ+ ) |
3 |
1
|
cnfldtopon |
⊢ 𝐽 ∈ ( TopOn ‘ ℂ ) |
4 |
|
rpcn |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℂ ) |
5 |
|
ax-1 |
⊢ ( 𝑥 ∈ ℝ+ → ( 𝑥 ∈ ℝ → 𝑥 ∈ ℝ+ ) ) |
6 |
|
eqid |
⊢ ( ℂ ∖ ( -∞ (,] 0 ) ) = ( ℂ ∖ ( -∞ (,] 0 ) ) |
7 |
6
|
ellogdm |
⊢ ( 𝑥 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ↔ ( 𝑥 ∈ ℂ ∧ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℝ+ ) ) ) |
8 |
4 5 7
|
sylanbrc |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ) |
9 |
8
|
ssriv |
⊢ ℝ+ ⊆ ( ℂ ∖ ( -∞ (,] 0 ) ) |
10 |
|
cnex |
⊢ ℂ ∈ V |
11 |
10
|
difexi |
⊢ ( ℂ ∖ ( -∞ (,] 0 ) ) ∈ V |
12 |
|
restabs |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ ℂ ) ∧ ℝ+ ⊆ ( ℂ ∖ ( -∞ (,] 0 ) ) ∧ ( ℂ ∖ ( -∞ (,] 0 ) ) ∈ V ) → ( ( 𝐽 ↾t ( ℂ ∖ ( -∞ (,] 0 ) ) ) ↾t ℝ+ ) = ( 𝐽 ↾t ℝ+ ) ) |
13 |
3 9 11 12
|
mp3an |
⊢ ( ( 𝐽 ↾t ( ℂ ∖ ( -∞ (,] 0 ) ) ) ↾t ℝ+ ) = ( 𝐽 ↾t ℝ+ ) |
14 |
2 13
|
eqtr4i |
⊢ 𝐾 = ( ( 𝐽 ↾t ( ℂ ∖ ( -∞ (,] 0 ) ) ) ↾t ℝ+ ) |
15 |
3
|
a1i |
⊢ ( ⊤ → 𝐽 ∈ ( TopOn ‘ ℂ ) ) |
16 |
|
difss |
⊢ ( ℂ ∖ ( -∞ (,] 0 ) ) ⊆ ℂ |
17 |
|
resttopon |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ ℂ ) ∧ ( ℂ ∖ ( -∞ (,] 0 ) ) ⊆ ℂ ) → ( 𝐽 ↾t ( ℂ ∖ ( -∞ (,] 0 ) ) ) ∈ ( TopOn ‘ ( ℂ ∖ ( -∞ (,] 0 ) ) ) ) |
18 |
15 16 17
|
sylancl |
⊢ ( ⊤ → ( 𝐽 ↾t ( ℂ ∖ ( -∞ (,] 0 ) ) ) ∈ ( TopOn ‘ ( ℂ ∖ ( -∞ (,] 0 ) ) ) ) |
19 |
9
|
a1i |
⊢ ( ⊤ → ℝ+ ⊆ ( ℂ ∖ ( -∞ (,] 0 ) ) ) |
20 |
3
|
toponrestid |
⊢ 𝐽 = ( 𝐽 ↾t ℂ ) |
21 |
|
ssidd |
⊢ ( ⊤ → ℂ ⊆ ℂ ) |
22 |
|
eqid |
⊢ ( 𝐽 ↾t ( ℂ ∖ ( -∞ (,] 0 ) ) ) = ( 𝐽 ↾t ( ℂ ∖ ( -∞ (,] 0 ) ) ) |
23 |
6 1 22
|
cxpcn |
⊢ ( 𝑥 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) , 𝑦 ∈ ℂ ↦ ( 𝑥 ↑𝑐 𝑦 ) ) ∈ ( ( ( 𝐽 ↾t ( ℂ ∖ ( -∞ (,] 0 ) ) ) ×t 𝐽 ) Cn 𝐽 ) |
24 |
23
|
a1i |
⊢ ( ⊤ → ( 𝑥 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) , 𝑦 ∈ ℂ ↦ ( 𝑥 ↑𝑐 𝑦 ) ) ∈ ( ( ( 𝐽 ↾t ( ℂ ∖ ( -∞ (,] 0 ) ) ) ×t 𝐽 ) Cn 𝐽 ) ) |
25 |
14 18 19 20 15 21 24
|
cnmpt2res |
⊢ ( ⊤ → ( 𝑥 ∈ ℝ+ , 𝑦 ∈ ℂ ↦ ( 𝑥 ↑𝑐 𝑦 ) ) ∈ ( ( 𝐾 ×t 𝐽 ) Cn 𝐽 ) ) |
26 |
25
|
mptru |
⊢ ( 𝑥 ∈ ℝ+ , 𝑦 ∈ ℂ ↦ ( 𝑥 ↑𝑐 𝑦 ) ) ∈ ( ( 𝐾 ×t 𝐽 ) Cn 𝐽 ) |