Metamath Proof Explorer


Theorem cxpcn2

Description: Continuity of the complex power function, when the base is real. (Contributed by Mario Carneiro, 1-May-2016)

Ref Expression
Hypotheses cxpcn2.j 𝐽 = ( TopOpen ‘ ℂfld )
cxpcn2.k 𝐾 = ( 𝐽t+ )
Assertion cxpcn2 ( 𝑥 ∈ ℝ+ , 𝑦 ∈ ℂ ↦ ( 𝑥𝑐 𝑦 ) ) ∈ ( ( 𝐾 ×t 𝐽 ) Cn 𝐽 )

Proof

Step Hyp Ref Expression
1 cxpcn2.j 𝐽 = ( TopOpen ‘ ℂfld )
2 cxpcn2.k 𝐾 = ( 𝐽t+ )
3 1 cnfldtopon 𝐽 ∈ ( TopOn ‘ ℂ )
4 rpcn ( 𝑥 ∈ ℝ+𝑥 ∈ ℂ )
5 ax-1 ( 𝑥 ∈ ℝ+ → ( 𝑥 ∈ ℝ → 𝑥 ∈ ℝ+ ) )
6 eqid ( ℂ ∖ ( -∞ (,] 0 ) ) = ( ℂ ∖ ( -∞ (,] 0 ) )
7 6 ellogdm ( 𝑥 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ↔ ( 𝑥 ∈ ℂ ∧ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℝ+ ) ) )
8 4 5 7 sylanbrc ( 𝑥 ∈ ℝ+𝑥 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) )
9 8 ssriv + ⊆ ( ℂ ∖ ( -∞ (,] 0 ) )
10 cnex ℂ ∈ V
11 10 difexi ( ℂ ∖ ( -∞ (,] 0 ) ) ∈ V
12 restabs ( ( 𝐽 ∈ ( TopOn ‘ ℂ ) ∧ ℝ+ ⊆ ( ℂ ∖ ( -∞ (,] 0 ) ) ∧ ( ℂ ∖ ( -∞ (,] 0 ) ) ∈ V ) → ( ( 𝐽t ( ℂ ∖ ( -∞ (,] 0 ) ) ) ↾t+ ) = ( 𝐽t+ ) )
13 3 9 11 12 mp3an ( ( 𝐽t ( ℂ ∖ ( -∞ (,] 0 ) ) ) ↾t+ ) = ( 𝐽t+ )
14 2 13 eqtr4i 𝐾 = ( ( 𝐽t ( ℂ ∖ ( -∞ (,] 0 ) ) ) ↾t+ )
15 3 a1i ( ⊤ → 𝐽 ∈ ( TopOn ‘ ℂ ) )
16 difss ( ℂ ∖ ( -∞ (,] 0 ) ) ⊆ ℂ
17 resttopon ( ( 𝐽 ∈ ( TopOn ‘ ℂ ) ∧ ( ℂ ∖ ( -∞ (,] 0 ) ) ⊆ ℂ ) → ( 𝐽t ( ℂ ∖ ( -∞ (,] 0 ) ) ) ∈ ( TopOn ‘ ( ℂ ∖ ( -∞ (,] 0 ) ) ) )
18 15 16 17 sylancl ( ⊤ → ( 𝐽t ( ℂ ∖ ( -∞ (,] 0 ) ) ) ∈ ( TopOn ‘ ( ℂ ∖ ( -∞ (,] 0 ) ) ) )
19 9 a1i ( ⊤ → ℝ+ ⊆ ( ℂ ∖ ( -∞ (,] 0 ) ) )
20 3 toponrestid 𝐽 = ( 𝐽t ℂ )
21 ssidd ( ⊤ → ℂ ⊆ ℂ )
22 eqid ( 𝐽t ( ℂ ∖ ( -∞ (,] 0 ) ) ) = ( 𝐽t ( ℂ ∖ ( -∞ (,] 0 ) ) )
23 6 1 22 cxpcn ( 𝑥 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) , 𝑦 ∈ ℂ ↦ ( 𝑥𝑐 𝑦 ) ) ∈ ( ( ( 𝐽t ( ℂ ∖ ( -∞ (,] 0 ) ) ) ×t 𝐽 ) Cn 𝐽 )
24 23 a1i ( ⊤ → ( 𝑥 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) , 𝑦 ∈ ℂ ↦ ( 𝑥𝑐 𝑦 ) ) ∈ ( ( ( 𝐽t ( ℂ ∖ ( -∞ (,] 0 ) ) ) ×t 𝐽 ) Cn 𝐽 ) )
25 14 18 19 20 15 21 24 cnmpt2res ( ⊤ → ( 𝑥 ∈ ℝ+ , 𝑦 ∈ ℂ ↦ ( 𝑥𝑐 𝑦 ) ) ∈ ( ( 𝐾 ×t 𝐽 ) Cn 𝐽 ) )
26 25 mptru ( 𝑥 ∈ ℝ+ , 𝑦 ∈ ℂ ↦ ( 𝑥𝑐 𝑦 ) ) ∈ ( ( 𝐾 ×t 𝐽 ) Cn 𝐽 )