| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cxpi11d.a |  |-  ( ph -> A e. CC ) | 
						
							| 2 |  | cxpi11d.b |  |-  ( ph -> B e. CC ) | 
						
							| 3 |  | ax-icn |  |-  _i e. CC | 
						
							| 4 | 3 | a1i |  |-  ( ph -> _i e. CC ) | 
						
							| 5 |  | ine0 |  |-  _i =/= 0 | 
						
							| 6 | 5 | a1i |  |-  ( ph -> _i =/= 0 ) | 
						
							| 7 |  | ine1 |  |-  _i =/= 1 | 
						
							| 8 | 7 | a1i |  |-  ( ph -> _i =/= 1 ) | 
						
							| 9 | 4 1 2 6 8 | cxp112d |  |-  ( ph -> ( ( _i ^c A ) = ( _i ^c B ) <-> E. n e. ZZ A = ( B + ( ( ( _i x. ( 2 x. _pi ) ) x. n ) / ( log ` _i ) ) ) ) ) | 
						
							| 10 |  | 2cn |  |-  2 e. CC | 
						
							| 11 |  | picn |  |-  _pi e. CC | 
						
							| 12 | 10 11 | mulcli |  |-  ( 2 x. _pi ) e. CC | 
						
							| 13 | 3 12 | mulcli |  |-  ( _i x. ( 2 x. _pi ) ) e. CC | 
						
							| 14 | 13 | a1i |  |-  ( n e. ZZ -> ( _i x. ( 2 x. _pi ) ) e. CC ) | 
						
							| 15 |  | zcn |  |-  ( n e. ZZ -> n e. CC ) | 
						
							| 16 |  | logcl |  |-  ( ( _i e. CC /\ _i =/= 0 ) -> ( log ` _i ) e. CC ) | 
						
							| 17 | 3 5 16 | mp2an |  |-  ( log ` _i ) e. CC | 
						
							| 18 | 17 | a1i |  |-  ( n e. ZZ -> ( log ` _i ) e. CC ) | 
						
							| 19 |  | logccne0 |  |-  ( ( _i e. CC /\ _i =/= 0 /\ _i =/= 1 ) -> ( log ` _i ) =/= 0 ) | 
						
							| 20 | 3 5 7 19 | mp3an |  |-  ( log ` _i ) =/= 0 | 
						
							| 21 | 20 | a1i |  |-  ( n e. ZZ -> ( log ` _i ) =/= 0 ) | 
						
							| 22 | 14 15 18 21 | div23d |  |-  ( n e. ZZ -> ( ( ( _i x. ( 2 x. _pi ) ) x. n ) / ( log ` _i ) ) = ( ( ( _i x. ( 2 x. _pi ) ) / ( log ` _i ) ) x. n ) ) | 
						
							| 23 |  | logi |  |-  ( log ` _i ) = ( _i x. ( _pi / 2 ) ) | 
						
							| 24 | 23 | oveq2i |  |-  ( ( _i x. ( 2 x. _pi ) ) / ( log ` _i ) ) = ( ( _i x. ( 2 x. _pi ) ) / ( _i x. ( _pi / 2 ) ) ) | 
						
							| 25 | 12 | a1i |  |-  ( T. -> ( 2 x. _pi ) e. CC ) | 
						
							| 26 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 27 | 11 10 26 | divcli |  |-  ( _pi / 2 ) e. CC | 
						
							| 28 | 27 | a1i |  |-  ( T. -> ( _pi / 2 ) e. CC ) | 
						
							| 29 | 3 | a1i |  |-  ( T. -> _i e. CC ) | 
						
							| 30 |  | pine0 |  |-  _pi =/= 0 | 
						
							| 31 | 11 10 30 26 | divne0i |  |-  ( _pi / 2 ) =/= 0 | 
						
							| 32 | 31 | a1i |  |-  ( T. -> ( _pi / 2 ) =/= 0 ) | 
						
							| 33 | 5 | a1i |  |-  ( T. -> _i =/= 0 ) | 
						
							| 34 | 25 28 29 32 33 | divcan5d |  |-  ( T. -> ( ( _i x. ( 2 x. _pi ) ) / ( _i x. ( _pi / 2 ) ) ) = ( ( 2 x. _pi ) / ( _pi / 2 ) ) ) | 
						
							| 35 | 34 | mptru |  |-  ( ( _i x. ( 2 x. _pi ) ) / ( _i x. ( _pi / 2 ) ) ) = ( ( 2 x. _pi ) / ( _pi / 2 ) ) | 
						
							| 36 | 10 11 27 31 | divassi |  |-  ( ( 2 x. _pi ) / ( _pi / 2 ) ) = ( 2 x. ( _pi / ( _pi / 2 ) ) ) | 
						
							| 37 | 11 | a1i |  |-  ( T. -> _pi e. CC ) | 
						
							| 38 |  | 2cnd |  |-  ( T. -> 2 e. CC ) | 
						
							| 39 | 30 | a1i |  |-  ( T. -> _pi =/= 0 ) | 
						
							| 40 | 26 | a1i |  |-  ( T. -> 2 =/= 0 ) | 
						
							| 41 | 37 38 39 40 | ddcand |  |-  ( T. -> ( _pi / ( _pi / 2 ) ) = 2 ) | 
						
							| 42 | 41 | mptru |  |-  ( _pi / ( _pi / 2 ) ) = 2 | 
						
							| 43 | 42 | oveq2i |  |-  ( 2 x. ( _pi / ( _pi / 2 ) ) ) = ( 2 x. 2 ) | 
						
							| 44 |  | 2t2e4 |  |-  ( 2 x. 2 ) = 4 | 
						
							| 45 | 36 43 44 | 3eqtri |  |-  ( ( 2 x. _pi ) / ( _pi / 2 ) ) = 4 | 
						
							| 46 | 24 35 45 | 3eqtri |  |-  ( ( _i x. ( 2 x. _pi ) ) / ( log ` _i ) ) = 4 | 
						
							| 47 | 46 | oveq1i |  |-  ( ( ( _i x. ( 2 x. _pi ) ) / ( log ` _i ) ) x. n ) = ( 4 x. n ) | 
						
							| 48 | 22 47 | eqtrdi |  |-  ( n e. ZZ -> ( ( ( _i x. ( 2 x. _pi ) ) x. n ) / ( log ` _i ) ) = ( 4 x. n ) ) | 
						
							| 49 | 48 | oveq2d |  |-  ( n e. ZZ -> ( B + ( ( ( _i x. ( 2 x. _pi ) ) x. n ) / ( log ` _i ) ) ) = ( B + ( 4 x. n ) ) ) | 
						
							| 50 | 49 | eqeq2d |  |-  ( n e. ZZ -> ( A = ( B + ( ( ( _i x. ( 2 x. _pi ) ) x. n ) / ( log ` _i ) ) ) <-> A = ( B + ( 4 x. n ) ) ) ) | 
						
							| 51 | 50 | rexbiia |  |-  ( E. n e. ZZ A = ( B + ( ( ( _i x. ( 2 x. _pi ) ) x. n ) / ( log ` _i ) ) ) <-> E. n e. ZZ A = ( B + ( 4 x. n ) ) ) | 
						
							| 52 | 9 51 | bitrdi |  |-  ( ph -> ( ( _i ^c A ) = ( _i ^c B ) <-> E. n e. ZZ A = ( B + ( 4 x. n ) ) ) ) |