| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cxp112d.c |  |-  ( ph -> C e. CC ) | 
						
							| 2 |  | cxp112d.a |  |-  ( ph -> A e. CC ) | 
						
							| 3 |  | cxp112d.b |  |-  ( ph -> B e. CC ) | 
						
							| 4 |  | cxp112d.0 |  |-  ( ph -> C =/= 0 ) | 
						
							| 5 |  | cxp112d.1 |  |-  ( ph -> C =/= 1 ) | 
						
							| 6 | 1 4 2 | cxpefd |  |-  ( ph -> ( C ^c A ) = ( exp ` ( A x. ( log ` C ) ) ) ) | 
						
							| 7 | 1 4 3 | cxpefd |  |-  ( ph -> ( C ^c B ) = ( exp ` ( B x. ( log ` C ) ) ) ) | 
						
							| 8 | 6 7 | eqeq12d |  |-  ( ph -> ( ( C ^c A ) = ( C ^c B ) <-> ( exp ` ( A x. ( log ` C ) ) ) = ( exp ` ( B x. ( log ` C ) ) ) ) ) | 
						
							| 9 | 1 4 | logcld |  |-  ( ph -> ( log ` C ) e. CC ) | 
						
							| 10 | 2 9 | mulcld |  |-  ( ph -> ( A x. ( log ` C ) ) e. CC ) | 
						
							| 11 | 3 9 | mulcld |  |-  ( ph -> ( B x. ( log ` C ) ) e. CC ) | 
						
							| 12 | 10 11 | ef11d |  |-  ( ph -> ( ( exp ` ( A x. ( log ` C ) ) ) = ( exp ` ( B x. ( log ` C ) ) ) <-> E. n e. ZZ ( A x. ( log ` C ) ) = ( ( B x. ( log ` C ) ) + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) ) ) | 
						
							| 13 | 2 | adantr |  |-  ( ( ph /\ n e. ZZ ) -> A e. CC ) | 
						
							| 14 | 9 | adantr |  |-  ( ( ph /\ n e. ZZ ) -> ( log ` C ) e. CC ) | 
						
							| 15 | 11 | adantr |  |-  ( ( ph /\ n e. ZZ ) -> ( B x. ( log ` C ) ) e. CC ) | 
						
							| 16 |  | ax-icn |  |-  _i e. CC | 
						
							| 17 |  | 2cn |  |-  2 e. CC | 
						
							| 18 |  | picn |  |-  _pi e. CC | 
						
							| 19 | 17 18 | mulcli |  |-  ( 2 x. _pi ) e. CC | 
						
							| 20 | 16 19 | mulcli |  |-  ( _i x. ( 2 x. _pi ) ) e. CC | 
						
							| 21 | 20 | a1i |  |-  ( ( ph /\ n e. ZZ ) -> ( _i x. ( 2 x. _pi ) ) e. CC ) | 
						
							| 22 |  | zcn |  |-  ( n e. ZZ -> n e. CC ) | 
						
							| 23 | 22 | adantl |  |-  ( ( ph /\ n e. ZZ ) -> n e. CC ) | 
						
							| 24 | 21 23 | mulcld |  |-  ( ( ph /\ n e. ZZ ) -> ( ( _i x. ( 2 x. _pi ) ) x. n ) e. CC ) | 
						
							| 25 | 15 24 | addcld |  |-  ( ( ph /\ n e. ZZ ) -> ( ( B x. ( log ` C ) ) + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) e. CC ) | 
						
							| 26 | 1 4 5 | logccne0d |  |-  ( ph -> ( log ` C ) =/= 0 ) | 
						
							| 27 | 26 | adantr |  |-  ( ( ph /\ n e. ZZ ) -> ( log ` C ) =/= 0 ) | 
						
							| 28 | 13 14 25 27 | ldiv |  |-  ( ( ph /\ n e. ZZ ) -> ( ( A x. ( log ` C ) ) = ( ( B x. ( log ` C ) ) + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) <-> A = ( ( ( B x. ( log ` C ) ) + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) / ( log ` C ) ) ) ) | 
						
							| 29 | 15 24 14 27 | divdird |  |-  ( ( ph /\ n e. ZZ ) -> ( ( ( B x. ( log ` C ) ) + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) / ( log ` C ) ) = ( ( ( B x. ( log ` C ) ) / ( log ` C ) ) + ( ( ( _i x. ( 2 x. _pi ) ) x. n ) / ( log ` C ) ) ) ) | 
						
							| 30 | 3 9 26 | divcan4d |  |-  ( ph -> ( ( B x. ( log ` C ) ) / ( log ` C ) ) = B ) | 
						
							| 31 | 30 | adantr |  |-  ( ( ph /\ n e. ZZ ) -> ( ( B x. ( log ` C ) ) / ( log ` C ) ) = B ) | 
						
							| 32 | 31 | oveq1d |  |-  ( ( ph /\ n e. ZZ ) -> ( ( ( B x. ( log ` C ) ) / ( log ` C ) ) + ( ( ( _i x. ( 2 x. _pi ) ) x. n ) / ( log ` C ) ) ) = ( B + ( ( ( _i x. ( 2 x. _pi ) ) x. n ) / ( log ` C ) ) ) ) | 
						
							| 33 | 29 32 | eqtrd |  |-  ( ( ph /\ n e. ZZ ) -> ( ( ( B x. ( log ` C ) ) + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) / ( log ` C ) ) = ( B + ( ( ( _i x. ( 2 x. _pi ) ) x. n ) / ( log ` C ) ) ) ) | 
						
							| 34 | 33 | eqeq2d |  |-  ( ( ph /\ n e. ZZ ) -> ( A = ( ( ( B x. ( log ` C ) ) + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) / ( log ` C ) ) <-> A = ( B + ( ( ( _i x. ( 2 x. _pi ) ) x. n ) / ( log ` C ) ) ) ) ) | 
						
							| 35 | 28 34 | bitrd |  |-  ( ( ph /\ n e. ZZ ) -> ( ( A x. ( log ` C ) ) = ( ( B x. ( log ` C ) ) + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) <-> A = ( B + ( ( ( _i x. ( 2 x. _pi ) ) x. n ) / ( log ` C ) ) ) ) ) | 
						
							| 36 | 35 | rexbidva |  |-  ( ph -> ( E. n e. ZZ ( A x. ( log ` C ) ) = ( ( B x. ( log ` C ) ) + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) <-> E. n e. ZZ A = ( B + ( ( ( _i x. ( 2 x. _pi ) ) x. n ) / ( log ` C ) ) ) ) ) | 
						
							| 37 | 8 12 36 | 3bitrd |  |-  ( ph -> ( ( C ^c A ) = ( C ^c B ) <-> E. n e. ZZ A = ( B + ( ( ( _i x. ( 2 x. _pi ) ) x. n ) / ( log ` C ) ) ) ) ) |