| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cxp112d.c |
|- ( ph -> C e. CC ) |
| 2 |
|
cxp112d.a |
|- ( ph -> A e. CC ) |
| 3 |
|
cxp112d.b |
|- ( ph -> B e. CC ) |
| 4 |
|
cxp112d.0 |
|- ( ph -> C =/= 0 ) |
| 5 |
|
cxp112d.1 |
|- ( ph -> C =/= 1 ) |
| 6 |
1 4 2
|
cxpefd |
|- ( ph -> ( C ^c A ) = ( exp ` ( A x. ( log ` C ) ) ) ) |
| 7 |
1 4 3
|
cxpefd |
|- ( ph -> ( C ^c B ) = ( exp ` ( B x. ( log ` C ) ) ) ) |
| 8 |
6 7
|
eqeq12d |
|- ( ph -> ( ( C ^c A ) = ( C ^c B ) <-> ( exp ` ( A x. ( log ` C ) ) ) = ( exp ` ( B x. ( log ` C ) ) ) ) ) |
| 9 |
1 4
|
logcld |
|- ( ph -> ( log ` C ) e. CC ) |
| 10 |
2 9
|
mulcld |
|- ( ph -> ( A x. ( log ` C ) ) e. CC ) |
| 11 |
3 9
|
mulcld |
|- ( ph -> ( B x. ( log ` C ) ) e. CC ) |
| 12 |
10 11
|
ef11d |
|- ( ph -> ( ( exp ` ( A x. ( log ` C ) ) ) = ( exp ` ( B x. ( log ` C ) ) ) <-> E. n e. ZZ ( A x. ( log ` C ) ) = ( ( B x. ( log ` C ) ) + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) ) ) |
| 13 |
2
|
adantr |
|- ( ( ph /\ n e. ZZ ) -> A e. CC ) |
| 14 |
9
|
adantr |
|- ( ( ph /\ n e. ZZ ) -> ( log ` C ) e. CC ) |
| 15 |
11
|
adantr |
|- ( ( ph /\ n e. ZZ ) -> ( B x. ( log ` C ) ) e. CC ) |
| 16 |
|
ax-icn |
|- _i e. CC |
| 17 |
|
2cn |
|- 2 e. CC |
| 18 |
|
picn |
|- _pi e. CC |
| 19 |
17 18
|
mulcli |
|- ( 2 x. _pi ) e. CC |
| 20 |
16 19
|
mulcli |
|- ( _i x. ( 2 x. _pi ) ) e. CC |
| 21 |
20
|
a1i |
|- ( ( ph /\ n e. ZZ ) -> ( _i x. ( 2 x. _pi ) ) e. CC ) |
| 22 |
|
zcn |
|- ( n e. ZZ -> n e. CC ) |
| 23 |
22
|
adantl |
|- ( ( ph /\ n e. ZZ ) -> n e. CC ) |
| 24 |
21 23
|
mulcld |
|- ( ( ph /\ n e. ZZ ) -> ( ( _i x. ( 2 x. _pi ) ) x. n ) e. CC ) |
| 25 |
15 24
|
addcld |
|- ( ( ph /\ n e. ZZ ) -> ( ( B x. ( log ` C ) ) + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) e. CC ) |
| 26 |
1 4 5
|
logccne0d |
|- ( ph -> ( log ` C ) =/= 0 ) |
| 27 |
26
|
adantr |
|- ( ( ph /\ n e. ZZ ) -> ( log ` C ) =/= 0 ) |
| 28 |
13 14 25 27
|
ldiv |
|- ( ( ph /\ n e. ZZ ) -> ( ( A x. ( log ` C ) ) = ( ( B x. ( log ` C ) ) + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) <-> A = ( ( ( B x. ( log ` C ) ) + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) / ( log ` C ) ) ) ) |
| 29 |
15 24 14 27
|
divdird |
|- ( ( ph /\ n e. ZZ ) -> ( ( ( B x. ( log ` C ) ) + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) / ( log ` C ) ) = ( ( ( B x. ( log ` C ) ) / ( log ` C ) ) + ( ( ( _i x. ( 2 x. _pi ) ) x. n ) / ( log ` C ) ) ) ) |
| 30 |
3 9 26
|
divcan4d |
|- ( ph -> ( ( B x. ( log ` C ) ) / ( log ` C ) ) = B ) |
| 31 |
30
|
adantr |
|- ( ( ph /\ n e. ZZ ) -> ( ( B x. ( log ` C ) ) / ( log ` C ) ) = B ) |
| 32 |
31
|
oveq1d |
|- ( ( ph /\ n e. ZZ ) -> ( ( ( B x. ( log ` C ) ) / ( log ` C ) ) + ( ( ( _i x. ( 2 x. _pi ) ) x. n ) / ( log ` C ) ) ) = ( B + ( ( ( _i x. ( 2 x. _pi ) ) x. n ) / ( log ` C ) ) ) ) |
| 33 |
29 32
|
eqtrd |
|- ( ( ph /\ n e. ZZ ) -> ( ( ( B x. ( log ` C ) ) + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) / ( log ` C ) ) = ( B + ( ( ( _i x. ( 2 x. _pi ) ) x. n ) / ( log ` C ) ) ) ) |
| 34 |
33
|
eqeq2d |
|- ( ( ph /\ n e. ZZ ) -> ( A = ( ( ( B x. ( log ` C ) ) + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) / ( log ` C ) ) <-> A = ( B + ( ( ( _i x. ( 2 x. _pi ) ) x. n ) / ( log ` C ) ) ) ) ) |
| 35 |
28 34
|
bitrd |
|- ( ( ph /\ n e. ZZ ) -> ( ( A x. ( log ` C ) ) = ( ( B x. ( log ` C ) ) + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) <-> A = ( B + ( ( ( _i x. ( 2 x. _pi ) ) x. n ) / ( log ` C ) ) ) ) ) |
| 36 |
35
|
rexbidva |
|- ( ph -> ( E. n e. ZZ ( A x. ( log ` C ) ) = ( ( B x. ( log ` C ) ) + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) <-> E. n e. ZZ A = ( B + ( ( ( _i x. ( 2 x. _pi ) ) x. n ) / ( log ` C ) ) ) ) ) |
| 37 |
8 12 36
|
3bitrd |
|- ( ph -> ( ( C ^c A ) = ( C ^c B ) <-> E. n e. ZZ A = ( B + ( ( ( _i x. ( 2 x. _pi ) ) x. n ) / ( log ` C ) ) ) ) ) |