| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cxp111d.a |  |-  ( ph -> A e. CC ) | 
						
							| 2 |  | cxp111d.b |  |-  ( ph -> B e. CC ) | 
						
							| 3 |  | cxp111d.c |  |-  ( ph -> C e. CC ) | 
						
							| 4 |  | cxp111d.1 |  |-  ( ph -> A =/= 0 ) | 
						
							| 5 |  | cxp111d.2 |  |-  ( ph -> B =/= 0 ) | 
						
							| 6 |  | cxp111d.3 |  |-  ( ph -> C =/= 0 ) | 
						
							| 7 | 1 4 3 | cxpefd |  |-  ( ph -> ( A ^c C ) = ( exp ` ( C x. ( log ` A ) ) ) ) | 
						
							| 8 | 2 5 3 | cxpefd |  |-  ( ph -> ( B ^c C ) = ( exp ` ( C x. ( log ` B ) ) ) ) | 
						
							| 9 | 7 8 | eqeq12d |  |-  ( ph -> ( ( A ^c C ) = ( B ^c C ) <-> ( exp ` ( C x. ( log ` A ) ) ) = ( exp ` ( C x. ( log ` B ) ) ) ) ) | 
						
							| 10 | 1 4 | logcld |  |-  ( ph -> ( log ` A ) e. CC ) | 
						
							| 11 | 3 10 | mulcld |  |-  ( ph -> ( C x. ( log ` A ) ) e. CC ) | 
						
							| 12 | 2 5 | logcld |  |-  ( ph -> ( log ` B ) e. CC ) | 
						
							| 13 | 3 12 | mulcld |  |-  ( ph -> ( C x. ( log ` B ) ) e. CC ) | 
						
							| 14 | 11 13 | ef11d |  |-  ( ph -> ( ( exp ` ( C x. ( log ` A ) ) ) = ( exp ` ( C x. ( log ` B ) ) ) <-> E. n e. ZZ ( C x. ( log ` A ) ) = ( ( C x. ( log ` B ) ) + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) ) ) | 
						
							| 15 | 11 | adantr |  |-  ( ( ph /\ n e. ZZ ) -> ( C x. ( log ` A ) ) e. CC ) | 
						
							| 16 | 13 | adantr |  |-  ( ( ph /\ n e. ZZ ) -> ( C x. ( log ` B ) ) e. CC ) | 
						
							| 17 |  | ax-icn |  |-  _i e. CC | 
						
							| 18 |  | 2cn |  |-  2 e. CC | 
						
							| 19 |  | picn |  |-  _pi e. CC | 
						
							| 20 | 18 19 | mulcli |  |-  ( 2 x. _pi ) e. CC | 
						
							| 21 | 17 20 | mulcli |  |-  ( _i x. ( 2 x. _pi ) ) e. CC | 
						
							| 22 | 21 | a1i |  |-  ( ( ph /\ n e. ZZ ) -> ( _i x. ( 2 x. _pi ) ) e. CC ) | 
						
							| 23 |  | zcn |  |-  ( n e. ZZ -> n e. CC ) | 
						
							| 24 | 23 | adantl |  |-  ( ( ph /\ n e. ZZ ) -> n e. CC ) | 
						
							| 25 | 22 24 | mulcld |  |-  ( ( ph /\ n e. ZZ ) -> ( ( _i x. ( 2 x. _pi ) ) x. n ) e. CC ) | 
						
							| 26 | 16 25 | addcld |  |-  ( ( ph /\ n e. ZZ ) -> ( ( C x. ( log ` B ) ) + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) e. CC ) | 
						
							| 27 | 3 | adantr |  |-  ( ( ph /\ n e. ZZ ) -> C e. CC ) | 
						
							| 28 | 6 | adantr |  |-  ( ( ph /\ n e. ZZ ) -> C =/= 0 ) | 
						
							| 29 |  | div11 |  |-  ( ( ( C x. ( log ` A ) ) e. CC /\ ( ( C x. ( log ` B ) ) + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( C x. ( log ` A ) ) / C ) = ( ( ( C x. ( log ` B ) ) + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) / C ) <-> ( C x. ( log ` A ) ) = ( ( C x. ( log ` B ) ) + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) ) ) | 
						
							| 30 | 15 26 27 28 29 | syl112anc |  |-  ( ( ph /\ n e. ZZ ) -> ( ( ( C x. ( log ` A ) ) / C ) = ( ( ( C x. ( log ` B ) ) + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) / C ) <-> ( C x. ( log ` A ) ) = ( ( C x. ( log ` B ) ) + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) ) ) | 
						
							| 31 | 10 3 6 | divcan3d |  |-  ( ph -> ( ( C x. ( log ` A ) ) / C ) = ( log ` A ) ) | 
						
							| 32 | 31 | adantr |  |-  ( ( ph /\ n e. ZZ ) -> ( ( C x. ( log ` A ) ) / C ) = ( log ` A ) ) | 
						
							| 33 | 16 25 27 28 | divdird |  |-  ( ( ph /\ n e. ZZ ) -> ( ( ( C x. ( log ` B ) ) + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) / C ) = ( ( ( C x. ( log ` B ) ) / C ) + ( ( ( _i x. ( 2 x. _pi ) ) x. n ) / C ) ) ) | 
						
							| 34 | 12 3 6 | divcan3d |  |-  ( ph -> ( ( C x. ( log ` B ) ) / C ) = ( log ` B ) ) | 
						
							| 35 | 34 | adantr |  |-  ( ( ph /\ n e. ZZ ) -> ( ( C x. ( log ` B ) ) / C ) = ( log ` B ) ) | 
						
							| 36 | 35 | oveq1d |  |-  ( ( ph /\ n e. ZZ ) -> ( ( ( C x. ( log ` B ) ) / C ) + ( ( ( _i x. ( 2 x. _pi ) ) x. n ) / C ) ) = ( ( log ` B ) + ( ( ( _i x. ( 2 x. _pi ) ) x. n ) / C ) ) ) | 
						
							| 37 | 33 36 | eqtrd |  |-  ( ( ph /\ n e. ZZ ) -> ( ( ( C x. ( log ` B ) ) + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) / C ) = ( ( log ` B ) + ( ( ( _i x. ( 2 x. _pi ) ) x. n ) / C ) ) ) | 
						
							| 38 | 32 37 | eqeq12d |  |-  ( ( ph /\ n e. ZZ ) -> ( ( ( C x. ( log ` A ) ) / C ) = ( ( ( C x. ( log ` B ) ) + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) / C ) <-> ( log ` A ) = ( ( log ` B ) + ( ( ( _i x. ( 2 x. _pi ) ) x. n ) / C ) ) ) ) | 
						
							| 39 | 30 38 | bitr3d |  |-  ( ( ph /\ n e. ZZ ) -> ( ( C x. ( log ` A ) ) = ( ( C x. ( log ` B ) ) + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) <-> ( log ` A ) = ( ( log ` B ) + ( ( ( _i x. ( 2 x. _pi ) ) x. n ) / C ) ) ) ) | 
						
							| 40 | 39 | rexbidva |  |-  ( ph -> ( E. n e. ZZ ( C x. ( log ` A ) ) = ( ( C x. ( log ` B ) ) + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) <-> E. n e. ZZ ( log ` A ) = ( ( log ` B ) + ( ( ( _i x. ( 2 x. _pi ) ) x. n ) / C ) ) ) ) | 
						
							| 41 | 9 14 40 | 3bitrd |  |-  ( ph -> ( ( A ^c C ) = ( B ^c C ) <-> E. n e. ZZ ( log ` A ) = ( ( log ` B ) + ( ( ( _i x. ( 2 x. _pi ) ) x. n ) / C ) ) ) ) |