| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cxp111d.a | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 2 |  | cxp111d.b | ⊢ ( 𝜑  →  𝐵  ∈  ℂ ) | 
						
							| 3 |  | cxp111d.c | ⊢ ( 𝜑  →  𝐶  ∈  ℂ ) | 
						
							| 4 |  | cxp111d.1 | ⊢ ( 𝜑  →  𝐴  ≠  0 ) | 
						
							| 5 |  | cxp111d.2 | ⊢ ( 𝜑  →  𝐵  ≠  0 ) | 
						
							| 6 |  | cxp111d.3 | ⊢ ( 𝜑  →  𝐶  ≠  0 ) | 
						
							| 7 | 1 4 3 | cxpefd | ⊢ ( 𝜑  →  ( 𝐴 ↑𝑐 𝐶 )  =  ( exp ‘ ( 𝐶  ·  ( log ‘ 𝐴 ) ) ) ) | 
						
							| 8 | 2 5 3 | cxpefd | ⊢ ( 𝜑  →  ( 𝐵 ↑𝑐 𝐶 )  =  ( exp ‘ ( 𝐶  ·  ( log ‘ 𝐵 ) ) ) ) | 
						
							| 9 | 7 8 | eqeq12d | ⊢ ( 𝜑  →  ( ( 𝐴 ↑𝑐 𝐶 )  =  ( 𝐵 ↑𝑐 𝐶 )  ↔  ( exp ‘ ( 𝐶  ·  ( log ‘ 𝐴 ) ) )  =  ( exp ‘ ( 𝐶  ·  ( log ‘ 𝐵 ) ) ) ) ) | 
						
							| 10 | 1 4 | logcld | ⊢ ( 𝜑  →  ( log ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 11 | 3 10 | mulcld | ⊢ ( 𝜑  →  ( 𝐶  ·  ( log ‘ 𝐴 ) )  ∈  ℂ ) | 
						
							| 12 | 2 5 | logcld | ⊢ ( 𝜑  →  ( log ‘ 𝐵 )  ∈  ℂ ) | 
						
							| 13 | 3 12 | mulcld | ⊢ ( 𝜑  →  ( 𝐶  ·  ( log ‘ 𝐵 ) )  ∈  ℂ ) | 
						
							| 14 | 11 13 | ef11d | ⊢ ( 𝜑  →  ( ( exp ‘ ( 𝐶  ·  ( log ‘ 𝐴 ) ) )  =  ( exp ‘ ( 𝐶  ·  ( log ‘ 𝐵 ) ) )  ↔  ∃ 𝑛  ∈  ℤ ( 𝐶  ·  ( log ‘ 𝐴 ) )  =  ( ( 𝐶  ·  ( log ‘ 𝐵 ) )  +  ( ( i  ·  ( 2  ·  π ) )  ·  𝑛 ) ) ) ) | 
						
							| 15 | 11 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℤ )  →  ( 𝐶  ·  ( log ‘ 𝐴 ) )  ∈  ℂ ) | 
						
							| 16 | 13 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℤ )  →  ( 𝐶  ·  ( log ‘ 𝐵 ) )  ∈  ℂ ) | 
						
							| 17 |  | ax-icn | ⊢ i  ∈  ℂ | 
						
							| 18 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 19 |  | picn | ⊢ π  ∈  ℂ | 
						
							| 20 | 18 19 | mulcli | ⊢ ( 2  ·  π )  ∈  ℂ | 
						
							| 21 | 17 20 | mulcli | ⊢ ( i  ·  ( 2  ·  π ) )  ∈  ℂ | 
						
							| 22 | 21 | a1i | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℤ )  →  ( i  ·  ( 2  ·  π ) )  ∈  ℂ ) | 
						
							| 23 |  | zcn | ⊢ ( 𝑛  ∈  ℤ  →  𝑛  ∈  ℂ ) | 
						
							| 24 | 23 | adantl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℤ )  →  𝑛  ∈  ℂ ) | 
						
							| 25 | 22 24 | mulcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℤ )  →  ( ( i  ·  ( 2  ·  π ) )  ·  𝑛 )  ∈  ℂ ) | 
						
							| 26 | 16 25 | addcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℤ )  →  ( ( 𝐶  ·  ( log ‘ 𝐵 ) )  +  ( ( i  ·  ( 2  ·  π ) )  ·  𝑛 ) )  ∈  ℂ ) | 
						
							| 27 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℤ )  →  𝐶  ∈  ℂ ) | 
						
							| 28 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℤ )  →  𝐶  ≠  0 ) | 
						
							| 29 |  | div11 | ⊢ ( ( ( 𝐶  ·  ( log ‘ 𝐴 ) )  ∈  ℂ  ∧  ( ( 𝐶  ·  ( log ‘ 𝐵 ) )  +  ( ( i  ·  ( 2  ·  π ) )  ·  𝑛 ) )  ∈  ℂ  ∧  ( 𝐶  ∈  ℂ  ∧  𝐶  ≠  0 ) )  →  ( ( ( 𝐶  ·  ( log ‘ 𝐴 ) )  /  𝐶 )  =  ( ( ( 𝐶  ·  ( log ‘ 𝐵 ) )  +  ( ( i  ·  ( 2  ·  π ) )  ·  𝑛 ) )  /  𝐶 )  ↔  ( 𝐶  ·  ( log ‘ 𝐴 ) )  =  ( ( 𝐶  ·  ( log ‘ 𝐵 ) )  +  ( ( i  ·  ( 2  ·  π ) )  ·  𝑛 ) ) ) ) | 
						
							| 30 | 15 26 27 28 29 | syl112anc | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℤ )  →  ( ( ( 𝐶  ·  ( log ‘ 𝐴 ) )  /  𝐶 )  =  ( ( ( 𝐶  ·  ( log ‘ 𝐵 ) )  +  ( ( i  ·  ( 2  ·  π ) )  ·  𝑛 ) )  /  𝐶 )  ↔  ( 𝐶  ·  ( log ‘ 𝐴 ) )  =  ( ( 𝐶  ·  ( log ‘ 𝐵 ) )  +  ( ( i  ·  ( 2  ·  π ) )  ·  𝑛 ) ) ) ) | 
						
							| 31 | 10 3 6 | divcan3d | ⊢ ( 𝜑  →  ( ( 𝐶  ·  ( log ‘ 𝐴 ) )  /  𝐶 )  =  ( log ‘ 𝐴 ) ) | 
						
							| 32 | 31 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℤ )  →  ( ( 𝐶  ·  ( log ‘ 𝐴 ) )  /  𝐶 )  =  ( log ‘ 𝐴 ) ) | 
						
							| 33 | 16 25 27 28 | divdird | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℤ )  →  ( ( ( 𝐶  ·  ( log ‘ 𝐵 ) )  +  ( ( i  ·  ( 2  ·  π ) )  ·  𝑛 ) )  /  𝐶 )  =  ( ( ( 𝐶  ·  ( log ‘ 𝐵 ) )  /  𝐶 )  +  ( ( ( i  ·  ( 2  ·  π ) )  ·  𝑛 )  /  𝐶 ) ) ) | 
						
							| 34 | 12 3 6 | divcan3d | ⊢ ( 𝜑  →  ( ( 𝐶  ·  ( log ‘ 𝐵 ) )  /  𝐶 )  =  ( log ‘ 𝐵 ) ) | 
						
							| 35 | 34 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℤ )  →  ( ( 𝐶  ·  ( log ‘ 𝐵 ) )  /  𝐶 )  =  ( log ‘ 𝐵 ) ) | 
						
							| 36 | 35 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℤ )  →  ( ( ( 𝐶  ·  ( log ‘ 𝐵 ) )  /  𝐶 )  +  ( ( ( i  ·  ( 2  ·  π ) )  ·  𝑛 )  /  𝐶 ) )  =  ( ( log ‘ 𝐵 )  +  ( ( ( i  ·  ( 2  ·  π ) )  ·  𝑛 )  /  𝐶 ) ) ) | 
						
							| 37 | 33 36 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℤ )  →  ( ( ( 𝐶  ·  ( log ‘ 𝐵 ) )  +  ( ( i  ·  ( 2  ·  π ) )  ·  𝑛 ) )  /  𝐶 )  =  ( ( log ‘ 𝐵 )  +  ( ( ( i  ·  ( 2  ·  π ) )  ·  𝑛 )  /  𝐶 ) ) ) | 
						
							| 38 | 32 37 | eqeq12d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℤ )  →  ( ( ( 𝐶  ·  ( log ‘ 𝐴 ) )  /  𝐶 )  =  ( ( ( 𝐶  ·  ( log ‘ 𝐵 ) )  +  ( ( i  ·  ( 2  ·  π ) )  ·  𝑛 ) )  /  𝐶 )  ↔  ( log ‘ 𝐴 )  =  ( ( log ‘ 𝐵 )  +  ( ( ( i  ·  ( 2  ·  π ) )  ·  𝑛 )  /  𝐶 ) ) ) ) | 
						
							| 39 | 30 38 | bitr3d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℤ )  →  ( ( 𝐶  ·  ( log ‘ 𝐴 ) )  =  ( ( 𝐶  ·  ( log ‘ 𝐵 ) )  +  ( ( i  ·  ( 2  ·  π ) )  ·  𝑛 ) )  ↔  ( log ‘ 𝐴 )  =  ( ( log ‘ 𝐵 )  +  ( ( ( i  ·  ( 2  ·  π ) )  ·  𝑛 )  /  𝐶 ) ) ) ) | 
						
							| 40 | 39 | rexbidva | ⊢ ( 𝜑  →  ( ∃ 𝑛  ∈  ℤ ( 𝐶  ·  ( log ‘ 𝐴 ) )  =  ( ( 𝐶  ·  ( log ‘ 𝐵 ) )  +  ( ( i  ·  ( 2  ·  π ) )  ·  𝑛 ) )  ↔  ∃ 𝑛  ∈  ℤ ( log ‘ 𝐴 )  =  ( ( log ‘ 𝐵 )  +  ( ( ( i  ·  ( 2  ·  π ) )  ·  𝑛 )  /  𝐶 ) ) ) ) | 
						
							| 41 | 9 14 40 | 3bitrd | ⊢ ( 𝜑  →  ( ( 𝐴 ↑𝑐 𝐶 )  =  ( 𝐵 ↑𝑐 𝐶 )  ↔  ∃ 𝑛  ∈  ℤ ( log ‘ 𝐴 )  =  ( ( log ‘ 𝐵 )  +  ( ( ( i  ·  ( 2  ·  π ) )  ·  𝑛 )  /  𝐶 ) ) ) ) |