| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cxpi11d.a | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 2 |  | cxpi11d.b | ⊢ ( 𝜑  →  𝐵  ∈  ℂ ) | 
						
							| 3 |  | ax-icn | ⊢ i  ∈  ℂ | 
						
							| 4 | 3 | a1i | ⊢ ( 𝜑  →  i  ∈  ℂ ) | 
						
							| 5 |  | ine0 | ⊢ i  ≠  0 | 
						
							| 6 | 5 | a1i | ⊢ ( 𝜑  →  i  ≠  0 ) | 
						
							| 7 |  | ine1 | ⊢ i  ≠  1 | 
						
							| 8 | 7 | a1i | ⊢ ( 𝜑  →  i  ≠  1 ) | 
						
							| 9 | 4 1 2 6 8 | cxp112d | ⊢ ( 𝜑  →  ( ( i ↑𝑐 𝐴 )  =  ( i ↑𝑐 𝐵 )  ↔  ∃ 𝑛  ∈  ℤ 𝐴  =  ( 𝐵  +  ( ( ( i  ·  ( 2  ·  π ) )  ·  𝑛 )  /  ( log ‘ i ) ) ) ) ) | 
						
							| 10 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 11 |  | picn | ⊢ π  ∈  ℂ | 
						
							| 12 | 10 11 | mulcli | ⊢ ( 2  ·  π )  ∈  ℂ | 
						
							| 13 | 3 12 | mulcli | ⊢ ( i  ·  ( 2  ·  π ) )  ∈  ℂ | 
						
							| 14 | 13 | a1i | ⊢ ( 𝑛  ∈  ℤ  →  ( i  ·  ( 2  ·  π ) )  ∈  ℂ ) | 
						
							| 15 |  | zcn | ⊢ ( 𝑛  ∈  ℤ  →  𝑛  ∈  ℂ ) | 
						
							| 16 |  | logcl | ⊢ ( ( i  ∈  ℂ  ∧  i  ≠  0 )  →  ( log ‘ i )  ∈  ℂ ) | 
						
							| 17 | 3 5 16 | mp2an | ⊢ ( log ‘ i )  ∈  ℂ | 
						
							| 18 | 17 | a1i | ⊢ ( 𝑛  ∈  ℤ  →  ( log ‘ i )  ∈  ℂ ) | 
						
							| 19 |  | logccne0 | ⊢ ( ( i  ∈  ℂ  ∧  i  ≠  0  ∧  i  ≠  1 )  →  ( log ‘ i )  ≠  0 ) | 
						
							| 20 | 3 5 7 19 | mp3an | ⊢ ( log ‘ i )  ≠  0 | 
						
							| 21 | 20 | a1i | ⊢ ( 𝑛  ∈  ℤ  →  ( log ‘ i )  ≠  0 ) | 
						
							| 22 | 14 15 18 21 | div23d | ⊢ ( 𝑛  ∈  ℤ  →  ( ( ( i  ·  ( 2  ·  π ) )  ·  𝑛 )  /  ( log ‘ i ) )  =  ( ( ( i  ·  ( 2  ·  π ) )  /  ( log ‘ i ) )  ·  𝑛 ) ) | 
						
							| 23 |  | logi | ⊢ ( log ‘ i )  =  ( i  ·  ( π  /  2 ) ) | 
						
							| 24 | 23 | oveq2i | ⊢ ( ( i  ·  ( 2  ·  π ) )  /  ( log ‘ i ) )  =  ( ( i  ·  ( 2  ·  π ) )  /  ( i  ·  ( π  /  2 ) ) ) | 
						
							| 25 | 12 | a1i | ⊢ ( ⊤  →  ( 2  ·  π )  ∈  ℂ ) | 
						
							| 26 |  | 2ne0 | ⊢ 2  ≠  0 | 
						
							| 27 | 11 10 26 | divcli | ⊢ ( π  /  2 )  ∈  ℂ | 
						
							| 28 | 27 | a1i | ⊢ ( ⊤  →  ( π  /  2 )  ∈  ℂ ) | 
						
							| 29 | 3 | a1i | ⊢ ( ⊤  →  i  ∈  ℂ ) | 
						
							| 30 |  | pine0 | ⊢ π  ≠  0 | 
						
							| 31 | 11 10 30 26 | divne0i | ⊢ ( π  /  2 )  ≠  0 | 
						
							| 32 | 31 | a1i | ⊢ ( ⊤  →  ( π  /  2 )  ≠  0 ) | 
						
							| 33 | 5 | a1i | ⊢ ( ⊤  →  i  ≠  0 ) | 
						
							| 34 | 25 28 29 32 33 | divcan5d | ⊢ ( ⊤  →  ( ( i  ·  ( 2  ·  π ) )  /  ( i  ·  ( π  /  2 ) ) )  =  ( ( 2  ·  π )  /  ( π  /  2 ) ) ) | 
						
							| 35 | 34 | mptru | ⊢ ( ( i  ·  ( 2  ·  π ) )  /  ( i  ·  ( π  /  2 ) ) )  =  ( ( 2  ·  π )  /  ( π  /  2 ) ) | 
						
							| 36 | 10 11 27 31 | divassi | ⊢ ( ( 2  ·  π )  /  ( π  /  2 ) )  =  ( 2  ·  ( π  /  ( π  /  2 ) ) ) | 
						
							| 37 | 11 | a1i | ⊢ ( ⊤  →  π  ∈  ℂ ) | 
						
							| 38 |  | 2cnd | ⊢ ( ⊤  →  2  ∈  ℂ ) | 
						
							| 39 | 30 | a1i | ⊢ ( ⊤  →  π  ≠  0 ) | 
						
							| 40 | 26 | a1i | ⊢ ( ⊤  →  2  ≠  0 ) | 
						
							| 41 | 37 38 39 40 | ddcand | ⊢ ( ⊤  →  ( π  /  ( π  /  2 ) )  =  2 ) | 
						
							| 42 | 41 | mptru | ⊢ ( π  /  ( π  /  2 ) )  =  2 | 
						
							| 43 | 42 | oveq2i | ⊢ ( 2  ·  ( π  /  ( π  /  2 ) ) )  =  ( 2  ·  2 ) | 
						
							| 44 |  | 2t2e4 | ⊢ ( 2  ·  2 )  =  4 | 
						
							| 45 | 36 43 44 | 3eqtri | ⊢ ( ( 2  ·  π )  /  ( π  /  2 ) )  =  4 | 
						
							| 46 | 24 35 45 | 3eqtri | ⊢ ( ( i  ·  ( 2  ·  π ) )  /  ( log ‘ i ) )  =  4 | 
						
							| 47 | 46 | oveq1i | ⊢ ( ( ( i  ·  ( 2  ·  π ) )  /  ( log ‘ i ) )  ·  𝑛 )  =  ( 4  ·  𝑛 ) | 
						
							| 48 | 22 47 | eqtrdi | ⊢ ( 𝑛  ∈  ℤ  →  ( ( ( i  ·  ( 2  ·  π ) )  ·  𝑛 )  /  ( log ‘ i ) )  =  ( 4  ·  𝑛 ) ) | 
						
							| 49 | 48 | oveq2d | ⊢ ( 𝑛  ∈  ℤ  →  ( 𝐵  +  ( ( ( i  ·  ( 2  ·  π ) )  ·  𝑛 )  /  ( log ‘ i ) ) )  =  ( 𝐵  +  ( 4  ·  𝑛 ) ) ) | 
						
							| 50 | 49 | eqeq2d | ⊢ ( 𝑛  ∈  ℤ  →  ( 𝐴  =  ( 𝐵  +  ( ( ( i  ·  ( 2  ·  π ) )  ·  𝑛 )  /  ( log ‘ i ) ) )  ↔  𝐴  =  ( 𝐵  +  ( 4  ·  𝑛 ) ) ) ) | 
						
							| 51 | 50 | rexbiia | ⊢ ( ∃ 𝑛  ∈  ℤ 𝐴  =  ( 𝐵  +  ( ( ( i  ·  ( 2  ·  π ) )  ·  𝑛 )  /  ( log ‘ i ) ) )  ↔  ∃ 𝑛  ∈  ℤ 𝐴  =  ( 𝐵  +  ( 4  ·  𝑛 ) ) ) | 
						
							| 52 | 9 51 | bitrdi | ⊢ ( 𝜑  →  ( ( i ↑𝑐 𝐴 )  =  ( i ↑𝑐 𝐵 )  ↔  ∃ 𝑛  ∈  ℤ 𝐴  =  ( 𝐵  +  ( 4  ·  𝑛 ) ) ) ) |