| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cxp112d.c | ⊢ ( 𝜑  →  𝐶  ∈  ℂ ) | 
						
							| 2 |  | cxp112d.a | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 3 |  | cxp112d.b | ⊢ ( 𝜑  →  𝐵  ∈  ℂ ) | 
						
							| 4 |  | cxp112d.0 | ⊢ ( 𝜑  →  𝐶  ≠  0 ) | 
						
							| 5 |  | cxp112d.1 | ⊢ ( 𝜑  →  𝐶  ≠  1 ) | 
						
							| 6 | 1 4 2 | cxpefd | ⊢ ( 𝜑  →  ( 𝐶 ↑𝑐 𝐴 )  =  ( exp ‘ ( 𝐴  ·  ( log ‘ 𝐶 ) ) ) ) | 
						
							| 7 | 1 4 3 | cxpefd | ⊢ ( 𝜑  →  ( 𝐶 ↑𝑐 𝐵 )  =  ( exp ‘ ( 𝐵  ·  ( log ‘ 𝐶 ) ) ) ) | 
						
							| 8 | 6 7 | eqeq12d | ⊢ ( 𝜑  →  ( ( 𝐶 ↑𝑐 𝐴 )  =  ( 𝐶 ↑𝑐 𝐵 )  ↔  ( exp ‘ ( 𝐴  ·  ( log ‘ 𝐶 ) ) )  =  ( exp ‘ ( 𝐵  ·  ( log ‘ 𝐶 ) ) ) ) ) | 
						
							| 9 | 1 4 | logcld | ⊢ ( 𝜑  →  ( log ‘ 𝐶 )  ∈  ℂ ) | 
						
							| 10 | 2 9 | mulcld | ⊢ ( 𝜑  →  ( 𝐴  ·  ( log ‘ 𝐶 ) )  ∈  ℂ ) | 
						
							| 11 | 3 9 | mulcld | ⊢ ( 𝜑  →  ( 𝐵  ·  ( log ‘ 𝐶 ) )  ∈  ℂ ) | 
						
							| 12 | 10 11 | ef11d | ⊢ ( 𝜑  →  ( ( exp ‘ ( 𝐴  ·  ( log ‘ 𝐶 ) ) )  =  ( exp ‘ ( 𝐵  ·  ( log ‘ 𝐶 ) ) )  ↔  ∃ 𝑛  ∈  ℤ ( 𝐴  ·  ( log ‘ 𝐶 ) )  =  ( ( 𝐵  ·  ( log ‘ 𝐶 ) )  +  ( ( i  ·  ( 2  ·  π ) )  ·  𝑛 ) ) ) ) | 
						
							| 13 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℤ )  →  𝐴  ∈  ℂ ) | 
						
							| 14 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℤ )  →  ( log ‘ 𝐶 )  ∈  ℂ ) | 
						
							| 15 | 11 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℤ )  →  ( 𝐵  ·  ( log ‘ 𝐶 ) )  ∈  ℂ ) | 
						
							| 16 |  | ax-icn | ⊢ i  ∈  ℂ | 
						
							| 17 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 18 |  | picn | ⊢ π  ∈  ℂ | 
						
							| 19 | 17 18 | mulcli | ⊢ ( 2  ·  π )  ∈  ℂ | 
						
							| 20 | 16 19 | mulcli | ⊢ ( i  ·  ( 2  ·  π ) )  ∈  ℂ | 
						
							| 21 | 20 | a1i | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℤ )  →  ( i  ·  ( 2  ·  π ) )  ∈  ℂ ) | 
						
							| 22 |  | zcn | ⊢ ( 𝑛  ∈  ℤ  →  𝑛  ∈  ℂ ) | 
						
							| 23 | 22 | adantl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℤ )  →  𝑛  ∈  ℂ ) | 
						
							| 24 | 21 23 | mulcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℤ )  →  ( ( i  ·  ( 2  ·  π ) )  ·  𝑛 )  ∈  ℂ ) | 
						
							| 25 | 15 24 | addcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℤ )  →  ( ( 𝐵  ·  ( log ‘ 𝐶 ) )  +  ( ( i  ·  ( 2  ·  π ) )  ·  𝑛 ) )  ∈  ℂ ) | 
						
							| 26 | 1 4 5 | logccne0d | ⊢ ( 𝜑  →  ( log ‘ 𝐶 )  ≠  0 ) | 
						
							| 27 | 26 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℤ )  →  ( log ‘ 𝐶 )  ≠  0 ) | 
						
							| 28 | 13 14 25 27 | ldiv | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℤ )  →  ( ( 𝐴  ·  ( log ‘ 𝐶 ) )  =  ( ( 𝐵  ·  ( log ‘ 𝐶 ) )  +  ( ( i  ·  ( 2  ·  π ) )  ·  𝑛 ) )  ↔  𝐴  =  ( ( ( 𝐵  ·  ( log ‘ 𝐶 ) )  +  ( ( i  ·  ( 2  ·  π ) )  ·  𝑛 ) )  /  ( log ‘ 𝐶 ) ) ) ) | 
						
							| 29 | 15 24 14 27 | divdird | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℤ )  →  ( ( ( 𝐵  ·  ( log ‘ 𝐶 ) )  +  ( ( i  ·  ( 2  ·  π ) )  ·  𝑛 ) )  /  ( log ‘ 𝐶 ) )  =  ( ( ( 𝐵  ·  ( log ‘ 𝐶 ) )  /  ( log ‘ 𝐶 ) )  +  ( ( ( i  ·  ( 2  ·  π ) )  ·  𝑛 )  /  ( log ‘ 𝐶 ) ) ) ) | 
						
							| 30 | 3 9 26 | divcan4d | ⊢ ( 𝜑  →  ( ( 𝐵  ·  ( log ‘ 𝐶 ) )  /  ( log ‘ 𝐶 ) )  =  𝐵 ) | 
						
							| 31 | 30 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℤ )  →  ( ( 𝐵  ·  ( log ‘ 𝐶 ) )  /  ( log ‘ 𝐶 ) )  =  𝐵 ) | 
						
							| 32 | 31 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℤ )  →  ( ( ( 𝐵  ·  ( log ‘ 𝐶 ) )  /  ( log ‘ 𝐶 ) )  +  ( ( ( i  ·  ( 2  ·  π ) )  ·  𝑛 )  /  ( log ‘ 𝐶 ) ) )  =  ( 𝐵  +  ( ( ( i  ·  ( 2  ·  π ) )  ·  𝑛 )  /  ( log ‘ 𝐶 ) ) ) ) | 
						
							| 33 | 29 32 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℤ )  →  ( ( ( 𝐵  ·  ( log ‘ 𝐶 ) )  +  ( ( i  ·  ( 2  ·  π ) )  ·  𝑛 ) )  /  ( log ‘ 𝐶 ) )  =  ( 𝐵  +  ( ( ( i  ·  ( 2  ·  π ) )  ·  𝑛 )  /  ( log ‘ 𝐶 ) ) ) ) | 
						
							| 34 | 33 | eqeq2d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℤ )  →  ( 𝐴  =  ( ( ( 𝐵  ·  ( log ‘ 𝐶 ) )  +  ( ( i  ·  ( 2  ·  π ) )  ·  𝑛 ) )  /  ( log ‘ 𝐶 ) )  ↔  𝐴  =  ( 𝐵  +  ( ( ( i  ·  ( 2  ·  π ) )  ·  𝑛 )  /  ( log ‘ 𝐶 ) ) ) ) ) | 
						
							| 35 | 28 34 | bitrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℤ )  →  ( ( 𝐴  ·  ( log ‘ 𝐶 ) )  =  ( ( 𝐵  ·  ( log ‘ 𝐶 ) )  +  ( ( i  ·  ( 2  ·  π ) )  ·  𝑛 ) )  ↔  𝐴  =  ( 𝐵  +  ( ( ( i  ·  ( 2  ·  π ) )  ·  𝑛 )  /  ( log ‘ 𝐶 ) ) ) ) ) | 
						
							| 36 | 35 | rexbidva | ⊢ ( 𝜑  →  ( ∃ 𝑛  ∈  ℤ ( 𝐴  ·  ( log ‘ 𝐶 ) )  =  ( ( 𝐵  ·  ( log ‘ 𝐶 ) )  +  ( ( i  ·  ( 2  ·  π ) )  ·  𝑛 ) )  ↔  ∃ 𝑛  ∈  ℤ 𝐴  =  ( 𝐵  +  ( ( ( i  ·  ( 2  ·  π ) )  ·  𝑛 )  /  ( log ‘ 𝐶 ) ) ) ) ) | 
						
							| 37 | 8 12 36 | 3bitrd | ⊢ ( 𝜑  →  ( ( 𝐶 ↑𝑐 𝐴 )  =  ( 𝐶 ↑𝑐 𝐵 )  ↔  ∃ 𝑛  ∈  ℤ 𝐴  =  ( 𝐵  +  ( ( ( i  ·  ( 2  ·  π ) )  ·  𝑛 )  /  ( log ‘ 𝐶 ) ) ) ) ) |