| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cygctb.1 |  |-  B = ( Base ` G ) | 
						
							| 2 |  | eqid |  |-  ( .g ` G ) = ( .g ` G ) | 
						
							| 3 | 1 2 | iscyg |  |-  ( G e. CycGrp <-> ( G e. Grp /\ E. x e. B ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B ) ) | 
						
							| 4 | 3 | simprbi |  |-  ( G e. CycGrp -> E. x e. B ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B ) | 
						
							| 5 |  | ovex |  |-  ( n ( .g ` G ) x ) e. _V | 
						
							| 6 |  | eqid |  |-  ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = ( n e. ZZ |-> ( n ( .g ` G ) x ) ) | 
						
							| 7 | 5 6 | fnmpti |  |-  ( n e. ZZ |-> ( n ( .g ` G ) x ) ) Fn ZZ | 
						
							| 8 |  | df-fo |  |-  ( ( n e. ZZ |-> ( n ( .g ` G ) x ) ) : ZZ -onto-> B <-> ( ( n e. ZZ |-> ( n ( .g ` G ) x ) ) Fn ZZ /\ ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B ) ) | 
						
							| 9 | 7 8 | mpbiran |  |-  ( ( n e. ZZ |-> ( n ( .g ` G ) x ) ) : ZZ -onto-> B <-> ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B ) | 
						
							| 10 |  | omelon |  |-  _om e. On | 
						
							| 11 |  | onenon |  |-  ( _om e. On -> _om e. dom card ) | 
						
							| 12 | 10 11 | ax-mp |  |-  _om e. dom card | 
						
							| 13 |  | znnen |  |-  ZZ ~~ NN | 
						
							| 14 |  | nnenom |  |-  NN ~~ _om | 
						
							| 15 | 13 14 | entri |  |-  ZZ ~~ _om | 
						
							| 16 |  | ennum |  |-  ( ZZ ~~ _om -> ( ZZ e. dom card <-> _om e. dom card ) ) | 
						
							| 17 | 15 16 | ax-mp |  |-  ( ZZ e. dom card <-> _om e. dom card ) | 
						
							| 18 | 12 17 | mpbir |  |-  ZZ e. dom card | 
						
							| 19 |  | fodomnum |  |-  ( ZZ e. dom card -> ( ( n e. ZZ |-> ( n ( .g ` G ) x ) ) : ZZ -onto-> B -> B ~<_ ZZ ) ) | 
						
							| 20 | 18 19 | mp1i |  |-  ( ( G e. CycGrp /\ x e. B ) -> ( ( n e. ZZ |-> ( n ( .g ` G ) x ) ) : ZZ -onto-> B -> B ~<_ ZZ ) ) | 
						
							| 21 |  | domentr |  |-  ( ( B ~<_ ZZ /\ ZZ ~~ _om ) -> B ~<_ _om ) | 
						
							| 22 | 15 21 | mpan2 |  |-  ( B ~<_ ZZ -> B ~<_ _om ) | 
						
							| 23 | 20 22 | syl6 |  |-  ( ( G e. CycGrp /\ x e. B ) -> ( ( n e. ZZ |-> ( n ( .g ` G ) x ) ) : ZZ -onto-> B -> B ~<_ _om ) ) | 
						
							| 24 | 9 23 | biimtrrid |  |-  ( ( G e. CycGrp /\ x e. B ) -> ( ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B -> B ~<_ _om ) ) | 
						
							| 25 | 24 | rexlimdva |  |-  ( G e. CycGrp -> ( E. x e. B ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B -> B ~<_ _om ) ) | 
						
							| 26 | 4 25 | mpd |  |-  ( G e. CycGrp -> B ~<_ _om ) |