| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cygctb.1 | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | eqid | ⊢ ( .g ‘ 𝐺 )  =  ( .g ‘ 𝐺 ) | 
						
							| 3 | 1 2 | iscyg | ⊢ ( 𝐺  ∈  CycGrp  ↔  ( 𝐺  ∈  Grp  ∧  ∃ 𝑥  ∈  𝐵 ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) )  =  𝐵 ) ) | 
						
							| 4 | 3 | simprbi | ⊢ ( 𝐺  ∈  CycGrp  →  ∃ 𝑥  ∈  𝐵 ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) )  =  𝐵 ) | 
						
							| 5 |  | ovex | ⊢ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 )  ∈  V | 
						
							| 6 |  | eqid | ⊢ ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) )  =  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) | 
						
							| 7 | 5 6 | fnmpti | ⊢ ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) )  Fn  ℤ | 
						
							| 8 |  | df-fo | ⊢ ( ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) : ℤ –onto→ 𝐵  ↔  ( ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) )  Fn  ℤ  ∧  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) )  =  𝐵 ) ) | 
						
							| 9 | 7 8 | mpbiran | ⊢ ( ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) : ℤ –onto→ 𝐵  ↔  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) )  =  𝐵 ) | 
						
							| 10 |  | omelon | ⊢ ω  ∈  On | 
						
							| 11 |  | onenon | ⊢ ( ω  ∈  On  →  ω  ∈  dom  card ) | 
						
							| 12 | 10 11 | ax-mp | ⊢ ω  ∈  dom  card | 
						
							| 13 |  | znnen | ⊢ ℤ  ≈  ℕ | 
						
							| 14 |  | nnenom | ⊢ ℕ  ≈  ω | 
						
							| 15 | 13 14 | entri | ⊢ ℤ  ≈  ω | 
						
							| 16 |  | ennum | ⊢ ( ℤ  ≈  ω  →  ( ℤ  ∈  dom  card  ↔  ω  ∈  dom  card ) ) | 
						
							| 17 | 15 16 | ax-mp | ⊢ ( ℤ  ∈  dom  card  ↔  ω  ∈  dom  card ) | 
						
							| 18 | 12 17 | mpbir | ⊢ ℤ  ∈  dom  card | 
						
							| 19 |  | fodomnum | ⊢ ( ℤ  ∈  dom  card  →  ( ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) : ℤ –onto→ 𝐵  →  𝐵  ≼  ℤ ) ) | 
						
							| 20 | 18 19 | mp1i | ⊢ ( ( 𝐺  ∈  CycGrp  ∧  𝑥  ∈  𝐵 )  →  ( ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) : ℤ –onto→ 𝐵  →  𝐵  ≼  ℤ ) ) | 
						
							| 21 |  | domentr | ⊢ ( ( 𝐵  ≼  ℤ  ∧  ℤ  ≈  ω )  →  𝐵  ≼  ω ) | 
						
							| 22 | 15 21 | mpan2 | ⊢ ( 𝐵  ≼  ℤ  →  𝐵  ≼  ω ) | 
						
							| 23 | 20 22 | syl6 | ⊢ ( ( 𝐺  ∈  CycGrp  ∧  𝑥  ∈  𝐵 )  →  ( ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) : ℤ –onto→ 𝐵  →  𝐵  ≼  ω ) ) | 
						
							| 24 | 9 23 | biimtrrid | ⊢ ( ( 𝐺  ∈  CycGrp  ∧  𝑥  ∈  𝐵 )  →  ( ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) )  =  𝐵  →  𝐵  ≼  ω ) ) | 
						
							| 25 | 24 | rexlimdva | ⊢ ( 𝐺  ∈  CycGrp  →  ( ∃ 𝑥  ∈  𝐵 ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) )  =  𝐵  →  𝐵  ≼  ω ) ) | 
						
							| 26 | 4 25 | mpd | ⊢ ( 𝐺  ∈  CycGrp  →  𝐵  ≼  ω ) |