Description: A cyclic group is countable. (Contributed by Mario Carneiro, 21-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Hypothesis | cygctb.1 | |
|
Assertion | cygctb | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cygctb.1 | |
|
2 | eqid | |
|
3 | 1 2 | iscyg | |
4 | 3 | simprbi | |
5 | ovex | |
|
6 | eqid | |
|
7 | 5 6 | fnmpti | |
8 | df-fo | |
|
9 | 7 8 | mpbiran | |
10 | omelon | |
|
11 | onenon | |
|
12 | 10 11 | ax-mp | |
13 | znnen | |
|
14 | nnenom | |
|
15 | 13 14 | entri | |
16 | ennum | |
|
17 | 15 16 | ax-mp | |
18 | 12 17 | mpbir | |
19 | fodomnum | |
|
20 | 18 19 | mp1i | |
21 | domentr | |
|
22 | 15 21 | mpan2 | |
23 | 20 22 | syl6 | |
24 | 9 23 | biimtrrid | |
25 | 24 | rexlimdva | |
26 | 4 25 | mpd | |