Metamath Proof Explorer


Theorem cygctb

Description: A cyclic group is countable. (Contributed by Mario Carneiro, 21-Apr-2016)

Ref Expression
Hypothesis cygctb.1 B=BaseG
Assertion cygctb GCycGrpBω

Proof

Step Hyp Ref Expression
1 cygctb.1 B=BaseG
2 eqid G=G
3 1 2 iscyg GCycGrpGGrpxBrannnGx=B
4 3 simprbi GCycGrpxBrannnGx=B
5 ovex nGxV
6 eqid nnGx=nnGx
7 5 6 fnmpti nnGxFn
8 df-fo nnGx:ontoBnnGxFnrannnGx=B
9 7 8 mpbiran nnGx:ontoBrannnGx=B
10 omelon ωOn
11 onenon ωOnωdomcard
12 10 11 ax-mp ωdomcard
13 znnen
14 nnenom ω
15 13 14 entri ω
16 ennum ωdomcardωdomcard
17 15 16 ax-mp domcardωdomcard
18 12 17 mpbir domcard
19 fodomnum domcardnnGx:ontoBB
20 18 19 mp1i GCycGrpxBnnGx:ontoBB
21 domentr BωBω
22 15 21 mpan2 BBω
23 20 22 syl6 GCycGrpxBnnGx:ontoBBω
24 9 23 biimtrrid GCycGrpxBrannnGx=BBω
25 24 rexlimdva GCycGrpxBrannnGx=BBω
26 4 25 mpd GCycGrpBω