| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfnbgr3.v |
|- V = ( Vtx ` G ) |
| 2 |
|
dfnbgr3.i |
|- I = ( iEdg ` G ) |
| 3 |
|
eqid |
|- ( Edg ` G ) = ( Edg ` G ) |
| 4 |
1 3
|
nbgrval |
|- ( N e. V -> ( G NeighbVtx N ) = { n e. ( V \ { N } ) | E. e e. ( Edg ` G ) { N , n } C_ e } ) |
| 5 |
4
|
adantr |
|- ( ( N e. V /\ Fun I ) -> ( G NeighbVtx N ) = { n e. ( V \ { N } ) | E. e e. ( Edg ` G ) { N , n } C_ e } ) |
| 6 |
|
edgval |
|- ( Edg ` G ) = ran ( iEdg ` G ) |
| 7 |
2
|
eqcomi |
|- ( iEdg ` G ) = I |
| 8 |
7
|
rneqi |
|- ran ( iEdg ` G ) = ran I |
| 9 |
6 8
|
eqtri |
|- ( Edg ` G ) = ran I |
| 10 |
9
|
rexeqi |
|- ( E. e e. ( Edg ` G ) { N , n } C_ e <-> E. e e. ran I { N , n } C_ e ) |
| 11 |
|
funfn |
|- ( Fun I <-> I Fn dom I ) |
| 12 |
11
|
biimpi |
|- ( Fun I -> I Fn dom I ) |
| 13 |
12
|
adantl |
|- ( ( N e. V /\ Fun I ) -> I Fn dom I ) |
| 14 |
|
sseq2 |
|- ( e = ( I ` i ) -> ( { N , n } C_ e <-> { N , n } C_ ( I ` i ) ) ) |
| 15 |
14
|
rexrn |
|- ( I Fn dom I -> ( E. e e. ran I { N , n } C_ e <-> E. i e. dom I { N , n } C_ ( I ` i ) ) ) |
| 16 |
13 15
|
syl |
|- ( ( N e. V /\ Fun I ) -> ( E. e e. ran I { N , n } C_ e <-> E. i e. dom I { N , n } C_ ( I ` i ) ) ) |
| 17 |
10 16
|
bitrid |
|- ( ( N e. V /\ Fun I ) -> ( E. e e. ( Edg ` G ) { N , n } C_ e <-> E. i e. dom I { N , n } C_ ( I ` i ) ) ) |
| 18 |
17
|
rabbidv |
|- ( ( N e. V /\ Fun I ) -> { n e. ( V \ { N } ) | E. e e. ( Edg ` G ) { N , n } C_ e } = { n e. ( V \ { N } ) | E. i e. dom I { N , n } C_ ( I ` i ) } ) |
| 19 |
5 18
|
eqtrd |
|- ( ( N e. V /\ Fun I ) -> ( G NeighbVtx N ) = { n e. ( V \ { N } ) | E. i e. dom I { N , n } C_ ( I ` i ) } ) |