| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-succf |
|- Succ = ( Cup o. ( _I (x) Singleton ) ) |
| 2 |
|
df-co |
|- ( Cup o. ( _I (x) Singleton ) ) = { <. m , n >. | E. x ( m ( _I (x) Singleton ) x /\ x Cup n ) } |
| 3 |
|
vex |
|- m e. _V |
| 4 |
|
vex |
|- n e. _V |
| 5 |
3 4
|
lemsuccf |
|- ( E. x ( m ( _I (x) Singleton ) x /\ x Cup n ) <-> n = suc m ) |
| 6 |
|
eqcom |
|- ( n = suc m <-> suc m = n ) |
| 7 |
5 6
|
bitri |
|- ( E. x ( m ( _I (x) Singleton ) x /\ x Cup n ) <-> suc m = n ) |
| 8 |
7
|
opabbii |
|- { <. m , n >. | E. x ( m ( _I (x) Singleton ) x /\ x Cup n ) } = { <. m , n >. | suc m = n } |
| 9 |
1 2 8
|
3eqtri |
|- Succ = { <. m , n >. | suc m = n } |