Metamath Proof Explorer


Theorem dfsuccf2

Description: Alternate definition of Scott Fenton's version of Succ , cf. df-sucmap . (Contributed by Peter Mazsa, 6-Jan-2026)

Ref Expression
Assertion dfsuccf2 𝖲𝗎𝖼𝖼 = m n | suc m = n

Proof

Step Hyp Ref Expression
1 df-succf 𝖲𝗎𝖼𝖼 = 𝖢𝗎𝗉 I 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇
2 df-co 𝖢𝗎𝗉 I 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 = m n | x m I 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 x x 𝖢𝗎𝗉 n
3 vex m V
4 vex n V
5 3 4 lemsuccf x m I 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 x x 𝖢𝗎𝗉 n n = suc m
6 eqcom n = suc m suc m = n
7 5 6 bitri x m I 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 x x 𝖢𝗎𝗉 n suc m = n
8 7 opabbii m n | x m I 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 x x 𝖢𝗎𝗉 n = m n | suc m = n
9 1 2 8 3eqtri 𝖲𝗎𝖼𝖼 = m n | suc m = n