| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-succf |
⊢ Succ = ( Cup ∘ ( I ⊗ Singleton ) ) |
| 2 |
|
df-co |
⊢ ( Cup ∘ ( I ⊗ Singleton ) ) = { 〈 𝑚 , 𝑛 〉 ∣ ∃ 𝑥 ( 𝑚 ( I ⊗ Singleton ) 𝑥 ∧ 𝑥 Cup 𝑛 ) } |
| 3 |
|
vex |
⊢ 𝑚 ∈ V |
| 4 |
|
vex |
⊢ 𝑛 ∈ V |
| 5 |
3 4
|
lemsuccf |
⊢ ( ∃ 𝑥 ( 𝑚 ( I ⊗ Singleton ) 𝑥 ∧ 𝑥 Cup 𝑛 ) ↔ 𝑛 = suc 𝑚 ) |
| 6 |
|
eqcom |
⊢ ( 𝑛 = suc 𝑚 ↔ suc 𝑚 = 𝑛 ) |
| 7 |
5 6
|
bitri |
⊢ ( ∃ 𝑥 ( 𝑚 ( I ⊗ Singleton ) 𝑥 ∧ 𝑥 Cup 𝑛 ) ↔ suc 𝑚 = 𝑛 ) |
| 8 |
7
|
opabbii |
⊢ { 〈 𝑚 , 𝑛 〉 ∣ ∃ 𝑥 ( 𝑚 ( I ⊗ Singleton ) 𝑥 ∧ 𝑥 Cup 𝑛 ) } = { 〈 𝑚 , 𝑛 〉 ∣ suc 𝑚 = 𝑛 } |
| 9 |
1 2 8
|
3eqtri |
⊢ Succ = { 〈 𝑚 , 𝑛 〉 ∣ suc 𝑚 = 𝑛 } |