Metamath Proof Explorer


Theorem lemsuccf

Description: Lemma for unfolding different forms of the Succ function. (Contributed by Scott Fenton, 14-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Hypotheses brsuccf.1 A V
brsuccf.2 B V
Assertion lemsuccf x A I 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 x x 𝖢𝗎𝗉 B B = suc A

Proof

Step Hyp Ref Expression
1 brsuccf.1 A V
2 brsuccf.2 B V
3 opex A A V
4 breq1 x = A A x 𝖢𝗎𝗉 B A A 𝖢𝗎𝗉 B
5 3 4 ceqsexv x x = A A x 𝖢𝗎𝗉 B A A 𝖢𝗎𝗉 B
6 snex A V
7 1 6 2 brcup A A 𝖢𝗎𝗉 B B = A A
8 5 7 bitri x x = A A x 𝖢𝗎𝗉 B B = A A
9 1 brtxp2 A I 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 x a b x = a b A I a A 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 b
10 9 anbi1i A I 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 x x 𝖢𝗎𝗉 B a b x = a b A I a A 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 b x 𝖢𝗎𝗉 B
11 3anass x = a b A I a A 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 b x = a b A I a A 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 b
12 11 anbi1i x = a b A I a A 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 b x 𝖢𝗎𝗉 B x = a b A I a A 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 b x 𝖢𝗎𝗉 B
13 an32 x = a b A I a A 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 b x 𝖢𝗎𝗉 B x = a b x 𝖢𝗎𝗉 B A I a A 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 b
14 vex a V
15 14 ideq A I a A = a
16 eqcom A = a a = A
17 15 16 bitri A I a a = A
18 vex b V
19 1 18 brsingle A 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 b b = A
20 17 19 anbi12i A I a A 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 b a = A b = A
21 20 anbi1i A I a A 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 b x = a b x 𝖢𝗎𝗉 B a = A b = A x = a b x 𝖢𝗎𝗉 B
22 ancom x = a b x 𝖢𝗎𝗉 B A I a A 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 b A I a A 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 b x = a b x 𝖢𝗎𝗉 B
23 df-3an a = A b = A x = a b x 𝖢𝗎𝗉 B a = A b = A x = a b x 𝖢𝗎𝗉 B
24 21 22 23 3bitr4i x = a b x 𝖢𝗎𝗉 B A I a A 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 b a = A b = A x = a b x 𝖢𝗎𝗉 B
25 12 13 24 3bitri x = a b A I a A 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 b x 𝖢𝗎𝗉 B a = A b = A x = a b x 𝖢𝗎𝗉 B
26 25 2exbii a b x = a b A I a A 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 b x 𝖢𝗎𝗉 B a b a = A b = A x = a b x 𝖢𝗎𝗉 B
27 19.41vv a b x = a b A I a A 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 b x 𝖢𝗎𝗉 B a b x = a b A I a A 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 b x 𝖢𝗎𝗉 B
28 opeq1 a = A a b = A b
29 28 eqeq2d a = A x = a b x = A b
30 29 anbi1d a = A x = a b x 𝖢𝗎𝗉 B x = A b x 𝖢𝗎𝗉 B
31 opeq2 b = A A b = A A
32 31 eqeq2d b = A x = A b x = A A
33 32 anbi1d b = A x = A b x 𝖢𝗎𝗉 B x = A A x 𝖢𝗎𝗉 B
34 1 6 30 33 ceqsex2v a b a = A b = A x = a b x 𝖢𝗎𝗉 B x = A A x 𝖢𝗎𝗉 B
35 26 27 34 3bitr3i a b x = a b A I a A 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 b x 𝖢𝗎𝗉 B x = A A x 𝖢𝗎𝗉 B
36 10 35 bitri A I 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 x x 𝖢𝗎𝗉 B x = A A x 𝖢𝗎𝗉 B
37 36 exbii x A I 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 x x 𝖢𝗎𝗉 B x x = A A x 𝖢𝗎𝗉 B
38 df-suc suc A = A A
39 38 eqeq2i B = suc A B = A A
40 8 37 39 3bitr4i x A I 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 x x 𝖢𝗎𝗉 B B = suc A