Description: Binary relation form of the Succ function. (Contributed by Scott Fenton, 14-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | brsuccf.1 | |
|
brsuccf.2 | |
||
Assertion | brsuccf | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brsuccf.1 | |
|
2 | brsuccf.2 | |
|
3 | df-succf | |
|
4 | 3 | breqi | |
5 | 1 2 | brco | |
6 | opex | |
|
7 | breq1 | |
|
8 | 6 7 | ceqsexv | |
9 | snex | |
|
10 | 1 9 2 | brcup | |
11 | 8 10 | bitri | |
12 | 1 | brtxp2 | |
13 | 12 | anbi1i | |
14 | 3anass | |
|
15 | 14 | anbi1i | |
16 | an32 | |
|
17 | vex | |
|
18 | 17 | ideq | |
19 | eqcom | |
|
20 | 18 19 | bitri | |
21 | vex | |
|
22 | 1 21 | brsingle | |
23 | 20 22 | anbi12i | |
24 | 23 | anbi1i | |
25 | ancom | |
|
26 | df-3an | |
|
27 | 24 25 26 | 3bitr4i | |
28 | 15 16 27 | 3bitri | |
29 | 28 | 2exbii | |
30 | 19.41vv | |
|
31 | opeq1 | |
|
32 | 31 | eqeq2d | |
33 | 32 | anbi1d | |
34 | opeq2 | |
|
35 | 34 | eqeq2d | |
36 | 35 | anbi1d | |
37 | 1 9 33 36 | ceqsex2v | |
38 | 29 30 37 | 3bitr3i | |
39 | 13 38 | bitri | |
40 | 39 | exbii | |
41 | df-suc | |
|
42 | 41 | eqeq2i | |
43 | 11 40 42 | 3bitr4i | |
44 | 4 5 43 | 3bitri | |