| Step | Hyp | Ref | Expression | 
						
							| 1 |  | brsuccf.1 |  |-  A e. _V | 
						
							| 2 |  | brsuccf.2 |  |-  B e. _V | 
						
							| 3 |  | df-succf |  |-  Succ = ( Cup o. ( _I (x) Singleton ) ) | 
						
							| 4 | 3 | breqi |  |-  ( A Succ B <-> A ( Cup o. ( _I (x) Singleton ) ) B ) | 
						
							| 5 | 1 2 | brco |  |-  ( A ( Cup o. ( _I (x) Singleton ) ) B <-> E. x ( A ( _I (x) Singleton ) x /\ x Cup B ) ) | 
						
							| 6 |  | opex |  |-  <. A , { A } >. e. _V | 
						
							| 7 |  | breq1 |  |-  ( x = <. A , { A } >. -> ( x Cup B <-> <. A , { A } >. Cup B ) ) | 
						
							| 8 | 6 7 | ceqsexv |  |-  ( E. x ( x = <. A , { A } >. /\ x Cup B ) <-> <. A , { A } >. Cup B ) | 
						
							| 9 |  | snex |  |-  { A } e. _V | 
						
							| 10 | 1 9 2 | brcup |  |-  ( <. A , { A } >. Cup B <-> B = ( A u. { A } ) ) | 
						
							| 11 | 8 10 | bitri |  |-  ( E. x ( x = <. A , { A } >. /\ x Cup B ) <-> B = ( A u. { A } ) ) | 
						
							| 12 | 1 | brtxp2 |  |-  ( A ( _I (x) Singleton ) x <-> E. a E. b ( x = <. a , b >. /\ A _I a /\ A Singleton b ) ) | 
						
							| 13 | 12 | anbi1i |  |-  ( ( A ( _I (x) Singleton ) x /\ x Cup B ) <-> ( E. a E. b ( x = <. a , b >. /\ A _I a /\ A Singleton b ) /\ x Cup B ) ) | 
						
							| 14 |  | 3anass |  |-  ( ( x = <. a , b >. /\ A _I a /\ A Singleton b ) <-> ( x = <. a , b >. /\ ( A _I a /\ A Singleton b ) ) ) | 
						
							| 15 | 14 | anbi1i |  |-  ( ( ( x = <. a , b >. /\ A _I a /\ A Singleton b ) /\ x Cup B ) <-> ( ( x = <. a , b >. /\ ( A _I a /\ A Singleton b ) ) /\ x Cup B ) ) | 
						
							| 16 |  | an32 |  |-  ( ( ( x = <. a , b >. /\ ( A _I a /\ A Singleton b ) ) /\ x Cup B ) <-> ( ( x = <. a , b >. /\ x Cup B ) /\ ( A _I a /\ A Singleton b ) ) ) | 
						
							| 17 |  | vex |  |-  a e. _V | 
						
							| 18 | 17 | ideq |  |-  ( A _I a <-> A = a ) | 
						
							| 19 |  | eqcom |  |-  ( A = a <-> a = A ) | 
						
							| 20 | 18 19 | bitri |  |-  ( A _I a <-> a = A ) | 
						
							| 21 |  | vex |  |-  b e. _V | 
						
							| 22 | 1 21 | brsingle |  |-  ( A Singleton b <-> b = { A } ) | 
						
							| 23 | 20 22 | anbi12i |  |-  ( ( A _I a /\ A Singleton b ) <-> ( a = A /\ b = { A } ) ) | 
						
							| 24 | 23 | anbi1i |  |-  ( ( ( A _I a /\ A Singleton b ) /\ ( x = <. a , b >. /\ x Cup B ) ) <-> ( ( a = A /\ b = { A } ) /\ ( x = <. a , b >. /\ x Cup B ) ) ) | 
						
							| 25 |  | ancom |  |-  ( ( ( x = <. a , b >. /\ x Cup B ) /\ ( A _I a /\ A Singleton b ) ) <-> ( ( A _I a /\ A Singleton b ) /\ ( x = <. a , b >. /\ x Cup B ) ) ) | 
						
							| 26 |  | df-3an |  |-  ( ( a = A /\ b = { A } /\ ( x = <. a , b >. /\ x Cup B ) ) <-> ( ( a = A /\ b = { A } ) /\ ( x = <. a , b >. /\ x Cup B ) ) ) | 
						
							| 27 | 24 25 26 | 3bitr4i |  |-  ( ( ( x = <. a , b >. /\ x Cup B ) /\ ( A _I a /\ A Singleton b ) ) <-> ( a = A /\ b = { A } /\ ( x = <. a , b >. /\ x Cup B ) ) ) | 
						
							| 28 | 15 16 27 | 3bitri |  |-  ( ( ( x = <. a , b >. /\ A _I a /\ A Singleton b ) /\ x Cup B ) <-> ( a = A /\ b = { A } /\ ( x = <. a , b >. /\ x Cup B ) ) ) | 
						
							| 29 | 28 | 2exbii |  |-  ( E. a E. b ( ( x = <. a , b >. /\ A _I a /\ A Singleton b ) /\ x Cup B ) <-> E. a E. b ( a = A /\ b = { A } /\ ( x = <. a , b >. /\ x Cup B ) ) ) | 
						
							| 30 |  | 19.41vv |  |-  ( E. a E. b ( ( x = <. a , b >. /\ A _I a /\ A Singleton b ) /\ x Cup B ) <-> ( E. a E. b ( x = <. a , b >. /\ A _I a /\ A Singleton b ) /\ x Cup B ) ) | 
						
							| 31 |  | opeq1 |  |-  ( a = A -> <. a , b >. = <. A , b >. ) | 
						
							| 32 | 31 | eqeq2d |  |-  ( a = A -> ( x = <. a , b >. <-> x = <. A , b >. ) ) | 
						
							| 33 | 32 | anbi1d |  |-  ( a = A -> ( ( x = <. a , b >. /\ x Cup B ) <-> ( x = <. A , b >. /\ x Cup B ) ) ) | 
						
							| 34 |  | opeq2 |  |-  ( b = { A } -> <. A , b >. = <. A , { A } >. ) | 
						
							| 35 | 34 | eqeq2d |  |-  ( b = { A } -> ( x = <. A , b >. <-> x = <. A , { A } >. ) ) | 
						
							| 36 | 35 | anbi1d |  |-  ( b = { A } -> ( ( x = <. A , b >. /\ x Cup B ) <-> ( x = <. A , { A } >. /\ x Cup B ) ) ) | 
						
							| 37 | 1 9 33 36 | ceqsex2v |  |-  ( E. a E. b ( a = A /\ b = { A } /\ ( x = <. a , b >. /\ x Cup B ) ) <-> ( x = <. A , { A } >. /\ x Cup B ) ) | 
						
							| 38 | 29 30 37 | 3bitr3i |  |-  ( ( E. a E. b ( x = <. a , b >. /\ A _I a /\ A Singleton b ) /\ x Cup B ) <-> ( x = <. A , { A } >. /\ x Cup B ) ) | 
						
							| 39 | 13 38 | bitri |  |-  ( ( A ( _I (x) Singleton ) x /\ x Cup B ) <-> ( x = <. A , { A } >. /\ x Cup B ) ) | 
						
							| 40 | 39 | exbii |  |-  ( E. x ( A ( _I (x) Singleton ) x /\ x Cup B ) <-> E. x ( x = <. A , { A } >. /\ x Cup B ) ) | 
						
							| 41 |  | df-suc |  |-  suc A = ( A u. { A } ) | 
						
							| 42 | 41 | eqeq2i |  |-  ( B = suc A <-> B = ( A u. { A } ) ) | 
						
							| 43 | 11 40 42 | 3bitr4i |  |-  ( E. x ( A ( _I (x) Singleton ) x /\ x Cup B ) <-> B = suc A ) | 
						
							| 44 | 4 5 43 | 3bitri |  |-  ( A Succ B <-> B = suc A ) |