Step |
Hyp |
Ref |
Expression |
1 |
|
brsuccf.1 |
|- A e. _V |
2 |
|
brsuccf.2 |
|- B e. _V |
3 |
|
df-succf |
|- Succ = ( Cup o. ( _I (x) Singleton ) ) |
4 |
3
|
breqi |
|- ( A Succ B <-> A ( Cup o. ( _I (x) Singleton ) ) B ) |
5 |
1 2
|
brco |
|- ( A ( Cup o. ( _I (x) Singleton ) ) B <-> E. x ( A ( _I (x) Singleton ) x /\ x Cup B ) ) |
6 |
|
opex |
|- <. A , { A } >. e. _V |
7 |
|
breq1 |
|- ( x = <. A , { A } >. -> ( x Cup B <-> <. A , { A } >. Cup B ) ) |
8 |
6 7
|
ceqsexv |
|- ( E. x ( x = <. A , { A } >. /\ x Cup B ) <-> <. A , { A } >. Cup B ) |
9 |
|
snex |
|- { A } e. _V |
10 |
1 9 2
|
brcup |
|- ( <. A , { A } >. Cup B <-> B = ( A u. { A } ) ) |
11 |
8 10
|
bitri |
|- ( E. x ( x = <. A , { A } >. /\ x Cup B ) <-> B = ( A u. { A } ) ) |
12 |
1
|
brtxp2 |
|- ( A ( _I (x) Singleton ) x <-> E. a E. b ( x = <. a , b >. /\ A _I a /\ A Singleton b ) ) |
13 |
12
|
anbi1i |
|- ( ( A ( _I (x) Singleton ) x /\ x Cup B ) <-> ( E. a E. b ( x = <. a , b >. /\ A _I a /\ A Singleton b ) /\ x Cup B ) ) |
14 |
|
3anass |
|- ( ( x = <. a , b >. /\ A _I a /\ A Singleton b ) <-> ( x = <. a , b >. /\ ( A _I a /\ A Singleton b ) ) ) |
15 |
14
|
anbi1i |
|- ( ( ( x = <. a , b >. /\ A _I a /\ A Singleton b ) /\ x Cup B ) <-> ( ( x = <. a , b >. /\ ( A _I a /\ A Singleton b ) ) /\ x Cup B ) ) |
16 |
|
an32 |
|- ( ( ( x = <. a , b >. /\ ( A _I a /\ A Singleton b ) ) /\ x Cup B ) <-> ( ( x = <. a , b >. /\ x Cup B ) /\ ( A _I a /\ A Singleton b ) ) ) |
17 |
|
vex |
|- a e. _V |
18 |
17
|
ideq |
|- ( A _I a <-> A = a ) |
19 |
|
eqcom |
|- ( A = a <-> a = A ) |
20 |
18 19
|
bitri |
|- ( A _I a <-> a = A ) |
21 |
|
vex |
|- b e. _V |
22 |
1 21
|
brsingle |
|- ( A Singleton b <-> b = { A } ) |
23 |
20 22
|
anbi12i |
|- ( ( A _I a /\ A Singleton b ) <-> ( a = A /\ b = { A } ) ) |
24 |
23
|
anbi1i |
|- ( ( ( A _I a /\ A Singleton b ) /\ ( x = <. a , b >. /\ x Cup B ) ) <-> ( ( a = A /\ b = { A } ) /\ ( x = <. a , b >. /\ x Cup B ) ) ) |
25 |
|
ancom |
|- ( ( ( x = <. a , b >. /\ x Cup B ) /\ ( A _I a /\ A Singleton b ) ) <-> ( ( A _I a /\ A Singleton b ) /\ ( x = <. a , b >. /\ x Cup B ) ) ) |
26 |
|
df-3an |
|- ( ( a = A /\ b = { A } /\ ( x = <. a , b >. /\ x Cup B ) ) <-> ( ( a = A /\ b = { A } ) /\ ( x = <. a , b >. /\ x Cup B ) ) ) |
27 |
24 25 26
|
3bitr4i |
|- ( ( ( x = <. a , b >. /\ x Cup B ) /\ ( A _I a /\ A Singleton b ) ) <-> ( a = A /\ b = { A } /\ ( x = <. a , b >. /\ x Cup B ) ) ) |
28 |
15 16 27
|
3bitri |
|- ( ( ( x = <. a , b >. /\ A _I a /\ A Singleton b ) /\ x Cup B ) <-> ( a = A /\ b = { A } /\ ( x = <. a , b >. /\ x Cup B ) ) ) |
29 |
28
|
2exbii |
|- ( E. a E. b ( ( x = <. a , b >. /\ A _I a /\ A Singleton b ) /\ x Cup B ) <-> E. a E. b ( a = A /\ b = { A } /\ ( x = <. a , b >. /\ x Cup B ) ) ) |
30 |
|
19.41vv |
|- ( E. a E. b ( ( x = <. a , b >. /\ A _I a /\ A Singleton b ) /\ x Cup B ) <-> ( E. a E. b ( x = <. a , b >. /\ A _I a /\ A Singleton b ) /\ x Cup B ) ) |
31 |
|
opeq1 |
|- ( a = A -> <. a , b >. = <. A , b >. ) |
32 |
31
|
eqeq2d |
|- ( a = A -> ( x = <. a , b >. <-> x = <. A , b >. ) ) |
33 |
32
|
anbi1d |
|- ( a = A -> ( ( x = <. a , b >. /\ x Cup B ) <-> ( x = <. A , b >. /\ x Cup B ) ) ) |
34 |
|
opeq2 |
|- ( b = { A } -> <. A , b >. = <. A , { A } >. ) |
35 |
34
|
eqeq2d |
|- ( b = { A } -> ( x = <. A , b >. <-> x = <. A , { A } >. ) ) |
36 |
35
|
anbi1d |
|- ( b = { A } -> ( ( x = <. A , b >. /\ x Cup B ) <-> ( x = <. A , { A } >. /\ x Cup B ) ) ) |
37 |
1 9 33 36
|
ceqsex2v |
|- ( E. a E. b ( a = A /\ b = { A } /\ ( x = <. a , b >. /\ x Cup B ) ) <-> ( x = <. A , { A } >. /\ x Cup B ) ) |
38 |
29 30 37
|
3bitr3i |
|- ( ( E. a E. b ( x = <. a , b >. /\ A _I a /\ A Singleton b ) /\ x Cup B ) <-> ( x = <. A , { A } >. /\ x Cup B ) ) |
39 |
13 38
|
bitri |
|- ( ( A ( _I (x) Singleton ) x /\ x Cup B ) <-> ( x = <. A , { A } >. /\ x Cup B ) ) |
40 |
39
|
exbii |
|- ( E. x ( A ( _I (x) Singleton ) x /\ x Cup B ) <-> E. x ( x = <. A , { A } >. /\ x Cup B ) ) |
41 |
|
df-suc |
|- suc A = ( A u. { A } ) |
42 |
41
|
eqeq2i |
|- ( B = suc A <-> B = ( A u. { A } ) ) |
43 |
11 40 42
|
3bitr4i |
|- ( E. x ( A ( _I (x) Singleton ) x /\ x Cup B ) <-> B = suc A ) |
44 |
4 5 43
|
3bitri |
|- ( A Succ B <-> B = suc A ) |