| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							df-clab | 
							 |-  ( y e. { x | ( ph /\ -. ps ) } <-> [ y / x ] ( ph /\ -. ps ) ) | 
						
						
							| 2 | 
							
								
							 | 
							sban | 
							 |-  ( [ y / x ] ( ph /\ -. ps ) <-> ( [ y / x ] ph /\ [ y / x ] -. ps ) )  | 
						
						
							| 3 | 
							
								
							 | 
							df-clab | 
							 |-  ( y e. { x | ph } <-> [ y / x ] ph ) | 
						
						
							| 4 | 
							
								3
							 | 
							bicomi | 
							 |-  ( [ y / x ] ph <-> y e. { x | ph } ) | 
						
						
							| 5 | 
							
								
							 | 
							sbn | 
							 |-  ( [ y / x ] -. ps <-> -. [ y / x ] ps )  | 
						
						
							| 6 | 
							
								
							 | 
							df-clab | 
							 |-  ( y e. { x | ps } <-> [ y / x ] ps ) | 
						
						
							| 7 | 
							
								5 6
							 | 
							xchbinxr | 
							 |-  ( [ y / x ] -. ps <-> -. y e. { x | ps } ) | 
						
						
							| 8 | 
							
								4 7
							 | 
							anbi12i | 
							 |-  ( ( [ y / x ] ph /\ [ y / x ] -. ps ) <-> ( y e. { x | ph } /\ -. y e. { x | ps } ) ) | 
						
						
							| 9 | 
							
								1 2 8
							 | 
							3bitrri | 
							 |-  ( ( y e. { x | ph } /\ -. y e. { x | ps } ) <-> y e. { x | ( ph /\ -. ps ) } ) | 
						
						
							| 10 | 
							
								9
							 | 
							difeqri | 
							 |-  ( { x | ph } \ { x | ps } ) = { x | ( ph /\ -. ps ) } |