| Step |
Hyp |
Ref |
Expression |
| 1 |
|
recn |
|- ( A e. RR -> A e. CC ) |
| 2 |
|
nn0cn |
|- ( B e. NN0 -> B e. CC ) |
| 3 |
1 2
|
anim12i |
|- ( ( A e. RR /\ B e. NN0 ) -> ( A e. CC /\ B e. CC ) ) |
| 4 |
3
|
3adant3 |
|- ( ( A e. RR /\ B e. NN0 /\ C e. RR ) -> ( A e. CC /\ B e. CC ) ) |
| 5 |
|
negsub |
|- ( ( A e. CC /\ B e. CC ) -> ( A + -u B ) = ( A - B ) ) |
| 6 |
4 5
|
syl |
|- ( ( A e. RR /\ B e. NN0 /\ C e. RR ) -> ( A + -u B ) = ( A - B ) ) |
| 7 |
6
|
eqcomd |
|- ( ( A e. RR /\ B e. NN0 /\ C e. RR ) -> ( A - B ) = ( A + -u B ) ) |
| 8 |
7
|
breq2d |
|- ( ( A e. RR /\ B e. NN0 /\ C e. RR ) -> ( C < ( A - B ) <-> C < ( A + -u B ) ) ) |
| 9 |
|
simp3 |
|- ( ( A e. RR /\ B e. NN0 /\ C e. RR ) -> C e. RR ) |
| 10 |
|
simp1 |
|- ( ( A e. RR /\ B e. NN0 /\ C e. RR ) -> A e. RR ) |
| 11 |
|
nn0re |
|- ( B e. NN0 -> B e. RR ) |
| 12 |
11
|
renegcld |
|- ( B e. NN0 -> -u B e. RR ) |
| 13 |
12
|
3ad2ant2 |
|- ( ( A e. RR /\ B e. NN0 /\ C e. RR ) -> -u B e. RR ) |
| 14 |
10 13
|
readdcld |
|- ( ( A e. RR /\ B e. NN0 /\ C e. RR ) -> ( A + -u B ) e. RR ) |
| 15 |
11
|
3ad2ant2 |
|- ( ( A e. RR /\ B e. NN0 /\ C e. RR ) -> B e. RR ) |
| 16 |
10 15
|
readdcld |
|- ( ( A e. RR /\ B e. NN0 /\ C e. RR ) -> ( A + B ) e. RR ) |
| 17 |
9 14 16
|
3jca |
|- ( ( A e. RR /\ B e. NN0 /\ C e. RR ) -> ( C e. RR /\ ( A + -u B ) e. RR /\ ( A + B ) e. RR ) ) |
| 18 |
|
nn0negleid |
|- ( B e. NN0 -> -u B <_ B ) |
| 19 |
18
|
3ad2ant2 |
|- ( ( A e. RR /\ B e. NN0 /\ C e. RR ) -> -u B <_ B ) |
| 20 |
13 15 10 19
|
leadd2dd |
|- ( ( A e. RR /\ B e. NN0 /\ C e. RR ) -> ( A + -u B ) <_ ( A + B ) ) |
| 21 |
17 20
|
lelttrdi |
|- ( ( A e. RR /\ B e. NN0 /\ C e. RR ) -> ( C < ( A + -u B ) -> C < ( A + B ) ) ) |
| 22 |
8 21
|
sylbid |
|- ( ( A e. RR /\ B e. NN0 /\ C e. RR ) -> ( C < ( A - B ) -> C < ( A + B ) ) ) |