| Step |
Hyp |
Ref |
Expression |
| 1 |
|
recn |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) |
| 2 |
|
nn0cn |
⊢ ( 𝐵 ∈ ℕ0 → 𝐵 ∈ ℂ ) |
| 3 |
1 2
|
anim12i |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ) → ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ) |
| 4 |
3
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℝ ) → ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ) |
| 5 |
|
negsub |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + - 𝐵 ) = ( 𝐴 − 𝐵 ) ) |
| 6 |
4 5
|
syl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℝ ) → ( 𝐴 + - 𝐵 ) = ( 𝐴 − 𝐵 ) ) |
| 7 |
6
|
eqcomd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℝ ) → ( 𝐴 − 𝐵 ) = ( 𝐴 + - 𝐵 ) ) |
| 8 |
7
|
breq2d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℝ ) → ( 𝐶 < ( 𝐴 − 𝐵 ) ↔ 𝐶 < ( 𝐴 + - 𝐵 ) ) ) |
| 9 |
|
simp3 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℝ ) → 𝐶 ∈ ℝ ) |
| 10 |
|
simp1 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℝ ) → 𝐴 ∈ ℝ ) |
| 11 |
|
nn0re |
⊢ ( 𝐵 ∈ ℕ0 → 𝐵 ∈ ℝ ) |
| 12 |
11
|
renegcld |
⊢ ( 𝐵 ∈ ℕ0 → - 𝐵 ∈ ℝ ) |
| 13 |
12
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℝ ) → - 𝐵 ∈ ℝ ) |
| 14 |
10 13
|
readdcld |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℝ ) → ( 𝐴 + - 𝐵 ) ∈ ℝ ) |
| 15 |
11
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℝ ) → 𝐵 ∈ ℝ ) |
| 16 |
10 15
|
readdcld |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℝ ) → ( 𝐴 + 𝐵 ) ∈ ℝ ) |
| 17 |
9 14 16
|
3jca |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℝ ) → ( 𝐶 ∈ ℝ ∧ ( 𝐴 + - 𝐵 ) ∈ ℝ ∧ ( 𝐴 + 𝐵 ) ∈ ℝ ) ) |
| 18 |
|
nn0negleid |
⊢ ( 𝐵 ∈ ℕ0 → - 𝐵 ≤ 𝐵 ) |
| 19 |
18
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℝ ) → - 𝐵 ≤ 𝐵 ) |
| 20 |
13 15 10 19
|
leadd2dd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℝ ) → ( 𝐴 + - 𝐵 ) ≤ ( 𝐴 + 𝐵 ) ) |
| 21 |
17 20
|
lelttrdi |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℝ ) → ( 𝐶 < ( 𝐴 + - 𝐵 ) → 𝐶 < ( 𝐴 + 𝐵 ) ) ) |
| 22 |
8 21
|
sylbid |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℝ ) → ( 𝐶 < ( 𝐴 − 𝐵 ) → 𝐶 < ( 𝐴 + 𝐵 ) ) ) |