Metamath Proof Explorer


Theorem difgtsumgt

Description: If the difference of a real number and a nonnegative integer is greater than another real number, the sum of the real number and the nonnegative integer is also greater than the other real number. (Contributed by AV, 13-Aug-2021)

Ref Expression
Assertion difgtsumgt AB0CC<ABC<A+B

Proof

Step Hyp Ref Expression
1 recn AA
2 nn0cn B0B
3 1 2 anim12i AB0AB
4 3 3adant3 AB0CAB
5 negsub ABA+B=AB
6 4 5 syl AB0CA+B=AB
7 6 eqcomd AB0CAB=A+B
8 7 breq2d AB0CC<ABC<A+B
9 simp3 AB0CC
10 simp1 AB0CA
11 nn0re B0B
12 11 renegcld B0B
13 12 3ad2ant2 AB0CB
14 10 13 readdcld AB0CA+B
15 11 3ad2ant2 AB0CB
16 10 15 readdcld AB0CA+B
17 9 14 16 3jca AB0CCA+BA+B
18 nn0negleid B0BB
19 18 3ad2ant2 AB0CBB
20 13 15 10 19 leadd2dd AB0CA+BA+B
21 17 20 lelttrdi AB0CC<A+BC<A+B
22 8 21 sylbid AB0CC<ABC<A+B