Description: If the difference of a real number and a nonnegative integer is greater than another real number, the sum of the real number and the nonnegative integer is also greater than the other real number. (Contributed by AV, 13-Aug-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | difgtsumgt | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recn | |
|
2 | nn0cn | |
|
3 | 1 2 | anim12i | |
4 | 3 | 3adant3 | |
5 | negsub | |
|
6 | 4 5 | syl | |
7 | 6 | eqcomd | |
8 | 7 | breq2d | |
9 | simp3 | |
|
10 | simp1 | |
|
11 | nn0re | |
|
12 | 11 | renegcld | |
13 | 12 | 3ad2ant2 | |
14 | 10 13 | readdcld | |
15 | 11 | 3ad2ant2 | |
16 | 10 15 | readdcld | |
17 | 9 14 16 | 3jca | |
18 | nn0negleid | |
|
19 | 18 | 3ad2ant2 | |
20 | 13 15 10 19 | leadd2dd | |
21 | 17 20 | lelttrdi | |
22 | 8 21 | sylbid | |