| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nn0cn |  |-  ( A e. NN0 -> A e. CC ) | 
						
							| 2 | 1 | 3ad2ant2 |  |-  ( ( ( A / 2 ) e. NN0 /\ A e. NN0 /\ I e. NN0 ) -> A e. CC ) | 
						
							| 3 |  | 2cnne0 |  |-  ( 2 e. CC /\ 2 =/= 0 ) | 
						
							| 4 | 3 | a1i |  |-  ( ( ( A / 2 ) e. NN0 /\ A e. NN0 /\ I e. NN0 ) -> ( 2 e. CC /\ 2 =/= 0 ) ) | 
						
							| 5 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 6 | 5 | a1i |  |-  ( I e. NN0 -> 2 e. NN0 ) | 
						
							| 7 |  | id |  |-  ( I e. NN0 -> I e. NN0 ) | 
						
							| 8 | 6 7 | nn0expcld |  |-  ( I e. NN0 -> ( 2 ^ I ) e. NN0 ) | 
						
							| 9 | 8 | nn0cnd |  |-  ( I e. NN0 -> ( 2 ^ I ) e. CC ) | 
						
							| 10 |  | 2cnd |  |-  ( I e. NN0 -> 2 e. CC ) | 
						
							| 11 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 12 | 11 | a1i |  |-  ( I e. NN0 -> 2 =/= 0 ) | 
						
							| 13 |  | nn0z |  |-  ( I e. NN0 -> I e. ZZ ) | 
						
							| 14 | 10 12 13 | expne0d |  |-  ( I e. NN0 -> ( 2 ^ I ) =/= 0 ) | 
						
							| 15 | 9 14 | jca |  |-  ( I e. NN0 -> ( ( 2 ^ I ) e. CC /\ ( 2 ^ I ) =/= 0 ) ) | 
						
							| 16 | 15 | 3ad2ant3 |  |-  ( ( ( A / 2 ) e. NN0 /\ A e. NN0 /\ I e. NN0 ) -> ( ( 2 ^ I ) e. CC /\ ( 2 ^ I ) =/= 0 ) ) | 
						
							| 17 |  | divdiv1 |  |-  ( ( A e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) /\ ( ( 2 ^ I ) e. CC /\ ( 2 ^ I ) =/= 0 ) ) -> ( ( A / 2 ) / ( 2 ^ I ) ) = ( A / ( 2 x. ( 2 ^ I ) ) ) ) | 
						
							| 18 | 2 4 16 17 | syl3anc |  |-  ( ( ( A / 2 ) e. NN0 /\ A e. NN0 /\ I e. NN0 ) -> ( ( A / 2 ) / ( 2 ^ I ) ) = ( A / ( 2 x. ( 2 ^ I ) ) ) ) | 
						
							| 19 | 10 9 | mulcomd |  |-  ( I e. NN0 -> ( 2 x. ( 2 ^ I ) ) = ( ( 2 ^ I ) x. 2 ) ) | 
						
							| 20 | 19 | 3ad2ant3 |  |-  ( ( ( A / 2 ) e. NN0 /\ A e. NN0 /\ I e. NN0 ) -> ( 2 x. ( 2 ^ I ) ) = ( ( 2 ^ I ) x. 2 ) ) | 
						
							| 21 |  | 2cnd |  |-  ( ( ( A / 2 ) e. NN0 /\ A e. NN0 /\ I e. NN0 ) -> 2 e. CC ) | 
						
							| 22 |  | simp3 |  |-  ( ( ( A / 2 ) e. NN0 /\ A e. NN0 /\ I e. NN0 ) -> I e. NN0 ) | 
						
							| 23 | 21 22 | expp1d |  |-  ( ( ( A / 2 ) e. NN0 /\ A e. NN0 /\ I e. NN0 ) -> ( 2 ^ ( I + 1 ) ) = ( ( 2 ^ I ) x. 2 ) ) | 
						
							| 24 | 20 23 | eqtr4d |  |-  ( ( ( A / 2 ) e. NN0 /\ A e. NN0 /\ I e. NN0 ) -> ( 2 x. ( 2 ^ I ) ) = ( 2 ^ ( I + 1 ) ) ) | 
						
							| 25 | 24 | oveq2d |  |-  ( ( ( A / 2 ) e. NN0 /\ A e. NN0 /\ I e. NN0 ) -> ( A / ( 2 x. ( 2 ^ I ) ) ) = ( A / ( 2 ^ ( I + 1 ) ) ) ) | 
						
							| 26 | 18 25 | eqtr2d |  |-  ( ( ( A / 2 ) e. NN0 /\ A e. NN0 /\ I e. NN0 ) -> ( A / ( 2 ^ ( I + 1 ) ) ) = ( ( A / 2 ) / ( 2 ^ I ) ) ) | 
						
							| 27 | 26 | fveq2d |  |-  ( ( ( A / 2 ) e. NN0 /\ A e. NN0 /\ I e. NN0 ) -> ( |_ ` ( A / ( 2 ^ ( I + 1 ) ) ) ) = ( |_ ` ( ( A / 2 ) / ( 2 ^ I ) ) ) ) | 
						
							| 28 | 27 | oveq1d |  |-  ( ( ( A / 2 ) e. NN0 /\ A e. NN0 /\ I e. NN0 ) -> ( ( |_ ` ( A / ( 2 ^ ( I + 1 ) ) ) ) mod 2 ) = ( ( |_ ` ( ( A / 2 ) / ( 2 ^ I ) ) ) mod 2 ) ) | 
						
							| 29 |  | 2nn |  |-  2 e. NN | 
						
							| 30 | 29 | a1i |  |-  ( ( ( A / 2 ) e. NN0 /\ A e. NN0 /\ I e. NN0 ) -> 2 e. NN ) | 
						
							| 31 |  | peano2nn0 |  |-  ( I e. NN0 -> ( I + 1 ) e. NN0 ) | 
						
							| 32 | 31 | 3ad2ant3 |  |-  ( ( ( A / 2 ) e. NN0 /\ A e. NN0 /\ I e. NN0 ) -> ( I + 1 ) e. NN0 ) | 
						
							| 33 |  | nn0rp0 |  |-  ( A e. NN0 -> A e. ( 0 [,) +oo ) ) | 
						
							| 34 | 33 | 3ad2ant2 |  |-  ( ( ( A / 2 ) e. NN0 /\ A e. NN0 /\ I e. NN0 ) -> A e. ( 0 [,) +oo ) ) | 
						
							| 35 |  | nn0digval |  |-  ( ( 2 e. NN /\ ( I + 1 ) e. NN0 /\ A e. ( 0 [,) +oo ) ) -> ( ( I + 1 ) ( digit ` 2 ) A ) = ( ( |_ ` ( A / ( 2 ^ ( I + 1 ) ) ) ) mod 2 ) ) | 
						
							| 36 | 30 32 34 35 | syl3anc |  |-  ( ( ( A / 2 ) e. NN0 /\ A e. NN0 /\ I e. NN0 ) -> ( ( I + 1 ) ( digit ` 2 ) A ) = ( ( |_ ` ( A / ( 2 ^ ( I + 1 ) ) ) ) mod 2 ) ) | 
						
							| 37 |  | nn0rp0 |  |-  ( ( A / 2 ) e. NN0 -> ( A / 2 ) e. ( 0 [,) +oo ) ) | 
						
							| 38 | 37 | 3ad2ant1 |  |-  ( ( ( A / 2 ) e. NN0 /\ A e. NN0 /\ I e. NN0 ) -> ( A / 2 ) e. ( 0 [,) +oo ) ) | 
						
							| 39 |  | nn0digval |  |-  ( ( 2 e. NN /\ I e. NN0 /\ ( A / 2 ) e. ( 0 [,) +oo ) ) -> ( I ( digit ` 2 ) ( A / 2 ) ) = ( ( |_ ` ( ( A / 2 ) / ( 2 ^ I ) ) ) mod 2 ) ) | 
						
							| 40 | 30 22 38 39 | syl3anc |  |-  ( ( ( A / 2 ) e. NN0 /\ A e. NN0 /\ I e. NN0 ) -> ( I ( digit ` 2 ) ( A / 2 ) ) = ( ( |_ ` ( ( A / 2 ) / ( 2 ^ I ) ) ) mod 2 ) ) | 
						
							| 41 | 28 36 40 | 3eqtr4d |  |-  ( ( ( A / 2 ) e. NN0 /\ A e. NN0 /\ I e. NN0 ) -> ( ( I + 1 ) ( digit ` 2 ) A ) = ( I ( digit ` 2 ) ( A / 2 ) ) ) |