| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nn0cn |
|- ( A e. NN0 -> A e. CC ) |
| 2 |
1
|
3ad2ant2 |
|- ( ( ( A / 2 ) e. NN0 /\ A e. NN0 /\ I e. NN0 ) -> A e. CC ) |
| 3 |
|
2cnne0 |
|- ( 2 e. CC /\ 2 =/= 0 ) |
| 4 |
3
|
a1i |
|- ( ( ( A / 2 ) e. NN0 /\ A e. NN0 /\ I e. NN0 ) -> ( 2 e. CC /\ 2 =/= 0 ) ) |
| 5 |
|
2nn0 |
|- 2 e. NN0 |
| 6 |
5
|
a1i |
|- ( I e. NN0 -> 2 e. NN0 ) |
| 7 |
|
id |
|- ( I e. NN0 -> I e. NN0 ) |
| 8 |
6 7
|
nn0expcld |
|- ( I e. NN0 -> ( 2 ^ I ) e. NN0 ) |
| 9 |
8
|
nn0cnd |
|- ( I e. NN0 -> ( 2 ^ I ) e. CC ) |
| 10 |
|
2cnd |
|- ( I e. NN0 -> 2 e. CC ) |
| 11 |
|
2ne0 |
|- 2 =/= 0 |
| 12 |
11
|
a1i |
|- ( I e. NN0 -> 2 =/= 0 ) |
| 13 |
|
nn0z |
|- ( I e. NN0 -> I e. ZZ ) |
| 14 |
10 12 13
|
expne0d |
|- ( I e. NN0 -> ( 2 ^ I ) =/= 0 ) |
| 15 |
9 14
|
jca |
|- ( I e. NN0 -> ( ( 2 ^ I ) e. CC /\ ( 2 ^ I ) =/= 0 ) ) |
| 16 |
15
|
3ad2ant3 |
|- ( ( ( A / 2 ) e. NN0 /\ A e. NN0 /\ I e. NN0 ) -> ( ( 2 ^ I ) e. CC /\ ( 2 ^ I ) =/= 0 ) ) |
| 17 |
|
divdiv1 |
|- ( ( A e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) /\ ( ( 2 ^ I ) e. CC /\ ( 2 ^ I ) =/= 0 ) ) -> ( ( A / 2 ) / ( 2 ^ I ) ) = ( A / ( 2 x. ( 2 ^ I ) ) ) ) |
| 18 |
2 4 16 17
|
syl3anc |
|- ( ( ( A / 2 ) e. NN0 /\ A e. NN0 /\ I e. NN0 ) -> ( ( A / 2 ) / ( 2 ^ I ) ) = ( A / ( 2 x. ( 2 ^ I ) ) ) ) |
| 19 |
10 9
|
mulcomd |
|- ( I e. NN0 -> ( 2 x. ( 2 ^ I ) ) = ( ( 2 ^ I ) x. 2 ) ) |
| 20 |
19
|
3ad2ant3 |
|- ( ( ( A / 2 ) e. NN0 /\ A e. NN0 /\ I e. NN0 ) -> ( 2 x. ( 2 ^ I ) ) = ( ( 2 ^ I ) x. 2 ) ) |
| 21 |
|
2cnd |
|- ( ( ( A / 2 ) e. NN0 /\ A e. NN0 /\ I e. NN0 ) -> 2 e. CC ) |
| 22 |
|
simp3 |
|- ( ( ( A / 2 ) e. NN0 /\ A e. NN0 /\ I e. NN0 ) -> I e. NN0 ) |
| 23 |
21 22
|
expp1d |
|- ( ( ( A / 2 ) e. NN0 /\ A e. NN0 /\ I e. NN0 ) -> ( 2 ^ ( I + 1 ) ) = ( ( 2 ^ I ) x. 2 ) ) |
| 24 |
20 23
|
eqtr4d |
|- ( ( ( A / 2 ) e. NN0 /\ A e. NN0 /\ I e. NN0 ) -> ( 2 x. ( 2 ^ I ) ) = ( 2 ^ ( I + 1 ) ) ) |
| 25 |
24
|
oveq2d |
|- ( ( ( A / 2 ) e. NN0 /\ A e. NN0 /\ I e. NN0 ) -> ( A / ( 2 x. ( 2 ^ I ) ) ) = ( A / ( 2 ^ ( I + 1 ) ) ) ) |
| 26 |
18 25
|
eqtr2d |
|- ( ( ( A / 2 ) e. NN0 /\ A e. NN0 /\ I e. NN0 ) -> ( A / ( 2 ^ ( I + 1 ) ) ) = ( ( A / 2 ) / ( 2 ^ I ) ) ) |
| 27 |
26
|
fveq2d |
|- ( ( ( A / 2 ) e. NN0 /\ A e. NN0 /\ I e. NN0 ) -> ( |_ ` ( A / ( 2 ^ ( I + 1 ) ) ) ) = ( |_ ` ( ( A / 2 ) / ( 2 ^ I ) ) ) ) |
| 28 |
27
|
oveq1d |
|- ( ( ( A / 2 ) e. NN0 /\ A e. NN0 /\ I e. NN0 ) -> ( ( |_ ` ( A / ( 2 ^ ( I + 1 ) ) ) ) mod 2 ) = ( ( |_ ` ( ( A / 2 ) / ( 2 ^ I ) ) ) mod 2 ) ) |
| 29 |
|
2nn |
|- 2 e. NN |
| 30 |
29
|
a1i |
|- ( ( ( A / 2 ) e. NN0 /\ A e. NN0 /\ I e. NN0 ) -> 2 e. NN ) |
| 31 |
|
peano2nn0 |
|- ( I e. NN0 -> ( I + 1 ) e. NN0 ) |
| 32 |
31
|
3ad2ant3 |
|- ( ( ( A / 2 ) e. NN0 /\ A e. NN0 /\ I e. NN0 ) -> ( I + 1 ) e. NN0 ) |
| 33 |
|
nn0rp0 |
|- ( A e. NN0 -> A e. ( 0 [,) +oo ) ) |
| 34 |
33
|
3ad2ant2 |
|- ( ( ( A / 2 ) e. NN0 /\ A e. NN0 /\ I e. NN0 ) -> A e. ( 0 [,) +oo ) ) |
| 35 |
|
nn0digval |
|- ( ( 2 e. NN /\ ( I + 1 ) e. NN0 /\ A e. ( 0 [,) +oo ) ) -> ( ( I + 1 ) ( digit ` 2 ) A ) = ( ( |_ ` ( A / ( 2 ^ ( I + 1 ) ) ) ) mod 2 ) ) |
| 36 |
30 32 34 35
|
syl3anc |
|- ( ( ( A / 2 ) e. NN0 /\ A e. NN0 /\ I e. NN0 ) -> ( ( I + 1 ) ( digit ` 2 ) A ) = ( ( |_ ` ( A / ( 2 ^ ( I + 1 ) ) ) ) mod 2 ) ) |
| 37 |
|
nn0rp0 |
|- ( ( A / 2 ) e. NN0 -> ( A / 2 ) e. ( 0 [,) +oo ) ) |
| 38 |
37
|
3ad2ant1 |
|- ( ( ( A / 2 ) e. NN0 /\ A e. NN0 /\ I e. NN0 ) -> ( A / 2 ) e. ( 0 [,) +oo ) ) |
| 39 |
|
nn0digval |
|- ( ( 2 e. NN /\ I e. NN0 /\ ( A / 2 ) e. ( 0 [,) +oo ) ) -> ( I ( digit ` 2 ) ( A / 2 ) ) = ( ( |_ ` ( ( A / 2 ) / ( 2 ^ I ) ) ) mod 2 ) ) |
| 40 |
30 22 38 39
|
syl3anc |
|- ( ( ( A / 2 ) e. NN0 /\ A e. NN0 /\ I e. NN0 ) -> ( I ( digit ` 2 ) ( A / 2 ) ) = ( ( |_ ` ( ( A / 2 ) / ( 2 ^ I ) ) ) mod 2 ) ) |
| 41 |
28 36 40
|
3eqtr4d |
|- ( ( ( A / 2 ) e. NN0 /\ A e. NN0 /\ I e. NN0 ) -> ( ( I + 1 ) ( digit ` 2 ) A ) = ( I ( digit ` 2 ) ( A / 2 ) ) ) |