Step |
Hyp |
Ref |
Expression |
1 |
|
nn0cn |
|- ( A e. NN0 -> A e. CC ) |
2 |
1
|
3ad2ant2 |
|- ( ( ( A / 2 ) e. NN0 /\ A e. NN0 /\ I e. NN0 ) -> A e. CC ) |
3 |
|
2cnne0 |
|- ( 2 e. CC /\ 2 =/= 0 ) |
4 |
3
|
a1i |
|- ( ( ( A / 2 ) e. NN0 /\ A e. NN0 /\ I e. NN0 ) -> ( 2 e. CC /\ 2 =/= 0 ) ) |
5 |
|
2nn0 |
|- 2 e. NN0 |
6 |
5
|
a1i |
|- ( I e. NN0 -> 2 e. NN0 ) |
7 |
|
id |
|- ( I e. NN0 -> I e. NN0 ) |
8 |
6 7
|
nn0expcld |
|- ( I e. NN0 -> ( 2 ^ I ) e. NN0 ) |
9 |
8
|
nn0cnd |
|- ( I e. NN0 -> ( 2 ^ I ) e. CC ) |
10 |
|
2cnd |
|- ( I e. NN0 -> 2 e. CC ) |
11 |
|
2ne0 |
|- 2 =/= 0 |
12 |
11
|
a1i |
|- ( I e. NN0 -> 2 =/= 0 ) |
13 |
|
nn0z |
|- ( I e. NN0 -> I e. ZZ ) |
14 |
10 12 13
|
expne0d |
|- ( I e. NN0 -> ( 2 ^ I ) =/= 0 ) |
15 |
9 14
|
jca |
|- ( I e. NN0 -> ( ( 2 ^ I ) e. CC /\ ( 2 ^ I ) =/= 0 ) ) |
16 |
15
|
3ad2ant3 |
|- ( ( ( A / 2 ) e. NN0 /\ A e. NN0 /\ I e. NN0 ) -> ( ( 2 ^ I ) e. CC /\ ( 2 ^ I ) =/= 0 ) ) |
17 |
|
divdiv1 |
|- ( ( A e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) /\ ( ( 2 ^ I ) e. CC /\ ( 2 ^ I ) =/= 0 ) ) -> ( ( A / 2 ) / ( 2 ^ I ) ) = ( A / ( 2 x. ( 2 ^ I ) ) ) ) |
18 |
2 4 16 17
|
syl3anc |
|- ( ( ( A / 2 ) e. NN0 /\ A e. NN0 /\ I e. NN0 ) -> ( ( A / 2 ) / ( 2 ^ I ) ) = ( A / ( 2 x. ( 2 ^ I ) ) ) ) |
19 |
10 9
|
mulcomd |
|- ( I e. NN0 -> ( 2 x. ( 2 ^ I ) ) = ( ( 2 ^ I ) x. 2 ) ) |
20 |
19
|
3ad2ant3 |
|- ( ( ( A / 2 ) e. NN0 /\ A e. NN0 /\ I e. NN0 ) -> ( 2 x. ( 2 ^ I ) ) = ( ( 2 ^ I ) x. 2 ) ) |
21 |
|
2cnd |
|- ( ( ( A / 2 ) e. NN0 /\ A e. NN0 /\ I e. NN0 ) -> 2 e. CC ) |
22 |
|
simp3 |
|- ( ( ( A / 2 ) e. NN0 /\ A e. NN0 /\ I e. NN0 ) -> I e. NN0 ) |
23 |
21 22
|
expp1d |
|- ( ( ( A / 2 ) e. NN0 /\ A e. NN0 /\ I e. NN0 ) -> ( 2 ^ ( I + 1 ) ) = ( ( 2 ^ I ) x. 2 ) ) |
24 |
20 23
|
eqtr4d |
|- ( ( ( A / 2 ) e. NN0 /\ A e. NN0 /\ I e. NN0 ) -> ( 2 x. ( 2 ^ I ) ) = ( 2 ^ ( I + 1 ) ) ) |
25 |
24
|
oveq2d |
|- ( ( ( A / 2 ) e. NN0 /\ A e. NN0 /\ I e. NN0 ) -> ( A / ( 2 x. ( 2 ^ I ) ) ) = ( A / ( 2 ^ ( I + 1 ) ) ) ) |
26 |
18 25
|
eqtr2d |
|- ( ( ( A / 2 ) e. NN0 /\ A e. NN0 /\ I e. NN0 ) -> ( A / ( 2 ^ ( I + 1 ) ) ) = ( ( A / 2 ) / ( 2 ^ I ) ) ) |
27 |
26
|
fveq2d |
|- ( ( ( A / 2 ) e. NN0 /\ A e. NN0 /\ I e. NN0 ) -> ( |_ ` ( A / ( 2 ^ ( I + 1 ) ) ) ) = ( |_ ` ( ( A / 2 ) / ( 2 ^ I ) ) ) ) |
28 |
27
|
oveq1d |
|- ( ( ( A / 2 ) e. NN0 /\ A e. NN0 /\ I e. NN0 ) -> ( ( |_ ` ( A / ( 2 ^ ( I + 1 ) ) ) ) mod 2 ) = ( ( |_ ` ( ( A / 2 ) / ( 2 ^ I ) ) ) mod 2 ) ) |
29 |
|
2nn |
|- 2 e. NN |
30 |
29
|
a1i |
|- ( ( ( A / 2 ) e. NN0 /\ A e. NN0 /\ I e. NN0 ) -> 2 e. NN ) |
31 |
|
peano2nn0 |
|- ( I e. NN0 -> ( I + 1 ) e. NN0 ) |
32 |
31
|
3ad2ant3 |
|- ( ( ( A / 2 ) e. NN0 /\ A e. NN0 /\ I e. NN0 ) -> ( I + 1 ) e. NN0 ) |
33 |
|
nn0rp0 |
|- ( A e. NN0 -> A e. ( 0 [,) +oo ) ) |
34 |
33
|
3ad2ant2 |
|- ( ( ( A / 2 ) e. NN0 /\ A e. NN0 /\ I e. NN0 ) -> A e. ( 0 [,) +oo ) ) |
35 |
|
nn0digval |
|- ( ( 2 e. NN /\ ( I + 1 ) e. NN0 /\ A e. ( 0 [,) +oo ) ) -> ( ( I + 1 ) ( digit ` 2 ) A ) = ( ( |_ ` ( A / ( 2 ^ ( I + 1 ) ) ) ) mod 2 ) ) |
36 |
30 32 34 35
|
syl3anc |
|- ( ( ( A / 2 ) e. NN0 /\ A e. NN0 /\ I e. NN0 ) -> ( ( I + 1 ) ( digit ` 2 ) A ) = ( ( |_ ` ( A / ( 2 ^ ( I + 1 ) ) ) ) mod 2 ) ) |
37 |
|
nn0rp0 |
|- ( ( A / 2 ) e. NN0 -> ( A / 2 ) e. ( 0 [,) +oo ) ) |
38 |
37
|
3ad2ant1 |
|- ( ( ( A / 2 ) e. NN0 /\ A e. NN0 /\ I e. NN0 ) -> ( A / 2 ) e. ( 0 [,) +oo ) ) |
39 |
|
nn0digval |
|- ( ( 2 e. NN /\ I e. NN0 /\ ( A / 2 ) e. ( 0 [,) +oo ) ) -> ( I ( digit ` 2 ) ( A / 2 ) ) = ( ( |_ ` ( ( A / 2 ) / ( 2 ^ I ) ) ) mod 2 ) ) |
40 |
30 22 38 39
|
syl3anc |
|- ( ( ( A / 2 ) e. NN0 /\ A e. NN0 /\ I e. NN0 ) -> ( I ( digit ` 2 ) ( A / 2 ) ) = ( ( |_ ` ( ( A / 2 ) / ( 2 ^ I ) ) ) mod 2 ) ) |
41 |
28 36 40
|
3eqtr4d |
|- ( ( ( A / 2 ) e. NN0 /\ A e. NN0 /\ I e. NN0 ) -> ( ( I + 1 ) ( digit ` 2 ) A ) = ( I ( digit ` 2 ) ( A / 2 ) ) ) |