| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eluzge2nn0 |  |-  ( A e. ( ZZ>= ` 2 ) -> A e. NN0 ) | 
						
							| 2 |  | nn0eo |  |-  ( A e. NN0 -> ( ( A / 2 ) e. NN0 \/ ( ( A + 1 ) / 2 ) e. NN0 ) ) | 
						
							| 3 | 1 2 | syl |  |-  ( A e. ( ZZ>= ` 2 ) -> ( ( A / 2 ) e. NN0 \/ ( ( A + 1 ) / 2 ) e. NN0 ) ) | 
						
							| 4 |  | dignn0ehalf |  |-  ( ( ( A / 2 ) e. NN0 /\ A e. NN0 /\ I e. NN0 ) -> ( ( I + 1 ) ( digit ` 2 ) A ) = ( I ( digit ` 2 ) ( A / 2 ) ) ) | 
						
							| 5 | 1 4 | syl3an2 |  |-  ( ( ( A / 2 ) e. NN0 /\ A e. ( ZZ>= ` 2 ) /\ I e. NN0 ) -> ( ( I + 1 ) ( digit ` 2 ) A ) = ( I ( digit ` 2 ) ( A / 2 ) ) ) | 
						
							| 6 |  | eluzelz |  |-  ( A e. ( ZZ>= ` 2 ) -> A e. ZZ ) | 
						
							| 7 |  | nn0z |  |-  ( ( A / 2 ) e. NN0 -> ( A / 2 ) e. ZZ ) | 
						
							| 8 |  | zefldiv2 |  |-  ( ( A e. ZZ /\ ( A / 2 ) e. ZZ ) -> ( |_ ` ( A / 2 ) ) = ( A / 2 ) ) | 
						
							| 9 | 6 7 8 | syl2anr |  |-  ( ( ( A / 2 ) e. NN0 /\ A e. ( ZZ>= ` 2 ) ) -> ( |_ ` ( A / 2 ) ) = ( A / 2 ) ) | 
						
							| 10 | 9 | eqcomd |  |-  ( ( ( A / 2 ) e. NN0 /\ A e. ( ZZ>= ` 2 ) ) -> ( A / 2 ) = ( |_ ` ( A / 2 ) ) ) | 
						
							| 11 | 10 | 3adant3 |  |-  ( ( ( A / 2 ) e. NN0 /\ A e. ( ZZ>= ` 2 ) /\ I e. NN0 ) -> ( A / 2 ) = ( |_ ` ( A / 2 ) ) ) | 
						
							| 12 | 11 | oveq2d |  |-  ( ( ( A / 2 ) e. NN0 /\ A e. ( ZZ>= ` 2 ) /\ I e. NN0 ) -> ( I ( digit ` 2 ) ( A / 2 ) ) = ( I ( digit ` 2 ) ( |_ ` ( A / 2 ) ) ) ) | 
						
							| 13 | 5 12 | eqtrd |  |-  ( ( ( A / 2 ) e. NN0 /\ A e. ( ZZ>= ` 2 ) /\ I e. NN0 ) -> ( ( I + 1 ) ( digit ` 2 ) A ) = ( I ( digit ` 2 ) ( |_ ` ( A / 2 ) ) ) ) | 
						
							| 14 | 13 | 3exp |  |-  ( ( A / 2 ) e. NN0 -> ( A e. ( ZZ>= ` 2 ) -> ( I e. NN0 -> ( ( I + 1 ) ( digit ` 2 ) A ) = ( I ( digit ` 2 ) ( |_ ` ( A / 2 ) ) ) ) ) ) | 
						
							| 15 | 6 | 3ad2ant2 |  |-  ( ( ( ( A + 1 ) / 2 ) e. NN0 /\ A e. ( ZZ>= ` 2 ) /\ I e. NN0 ) -> A e. ZZ ) | 
						
							| 16 |  | simp2 |  |-  ( ( ( ( A + 1 ) / 2 ) e. NN0 /\ A e. ( ZZ>= ` 2 ) /\ I e. NN0 ) -> A e. ( ZZ>= ` 2 ) ) | 
						
							| 17 |  | simp1 |  |-  ( ( ( ( A + 1 ) / 2 ) e. NN0 /\ A e. ( ZZ>= ` 2 ) /\ I e. NN0 ) -> ( ( A + 1 ) / 2 ) e. NN0 ) | 
						
							| 18 |  | nno |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ ( ( A + 1 ) / 2 ) e. NN0 ) -> ( ( A - 1 ) / 2 ) e. NN ) | 
						
							| 19 | 16 17 18 | syl2anc |  |-  ( ( ( ( A + 1 ) / 2 ) e. NN0 /\ A e. ( ZZ>= ` 2 ) /\ I e. NN0 ) -> ( ( A - 1 ) / 2 ) e. NN ) | 
						
							| 20 |  | simp3 |  |-  ( ( ( ( A + 1 ) / 2 ) e. NN0 /\ A e. ( ZZ>= ` 2 ) /\ I e. NN0 ) -> I e. NN0 ) | 
						
							| 21 |  | dignn0flhalflem2 |  |-  ( ( A e. ZZ /\ ( ( A - 1 ) / 2 ) e. NN /\ I e. NN0 ) -> ( |_ ` ( A / ( 2 ^ ( I + 1 ) ) ) ) = ( |_ ` ( ( |_ ` ( A / 2 ) ) / ( 2 ^ I ) ) ) ) | 
						
							| 22 | 15 19 20 21 | syl3anc |  |-  ( ( ( ( A + 1 ) / 2 ) e. NN0 /\ A e. ( ZZ>= ` 2 ) /\ I e. NN0 ) -> ( |_ ` ( A / ( 2 ^ ( I + 1 ) ) ) ) = ( |_ ` ( ( |_ ` ( A / 2 ) ) / ( 2 ^ I ) ) ) ) | 
						
							| 23 | 22 | oveq1d |  |-  ( ( ( ( A + 1 ) / 2 ) e. NN0 /\ A e. ( ZZ>= ` 2 ) /\ I e. NN0 ) -> ( ( |_ ` ( A / ( 2 ^ ( I + 1 ) ) ) ) mod 2 ) = ( ( |_ ` ( ( |_ ` ( A / 2 ) ) / ( 2 ^ I ) ) ) mod 2 ) ) | 
						
							| 24 |  | 2nn |  |-  2 e. NN | 
						
							| 25 | 24 | a1i |  |-  ( ( ( ( A + 1 ) / 2 ) e. NN0 /\ A e. ( ZZ>= ` 2 ) /\ I e. NN0 ) -> 2 e. NN ) | 
						
							| 26 |  | peano2nn0 |  |-  ( I e. NN0 -> ( I + 1 ) e. NN0 ) | 
						
							| 27 | 26 | 3ad2ant3 |  |-  ( ( ( ( A + 1 ) / 2 ) e. NN0 /\ A e. ( ZZ>= ` 2 ) /\ I e. NN0 ) -> ( I + 1 ) e. NN0 ) | 
						
							| 28 |  | nn0rp0 |  |-  ( A e. NN0 -> A e. ( 0 [,) +oo ) ) | 
						
							| 29 | 1 28 | syl |  |-  ( A e. ( ZZ>= ` 2 ) -> A e. ( 0 [,) +oo ) ) | 
						
							| 30 | 29 | 3ad2ant2 |  |-  ( ( ( ( A + 1 ) / 2 ) e. NN0 /\ A e. ( ZZ>= ` 2 ) /\ I e. NN0 ) -> A e. ( 0 [,) +oo ) ) | 
						
							| 31 |  | nn0digval |  |-  ( ( 2 e. NN /\ ( I + 1 ) e. NN0 /\ A e. ( 0 [,) +oo ) ) -> ( ( I + 1 ) ( digit ` 2 ) A ) = ( ( |_ ` ( A / ( 2 ^ ( I + 1 ) ) ) ) mod 2 ) ) | 
						
							| 32 | 25 27 30 31 | syl3anc |  |-  ( ( ( ( A + 1 ) / 2 ) e. NN0 /\ A e. ( ZZ>= ` 2 ) /\ I e. NN0 ) -> ( ( I + 1 ) ( digit ` 2 ) A ) = ( ( |_ ` ( A / ( 2 ^ ( I + 1 ) ) ) ) mod 2 ) ) | 
						
							| 33 |  | eluzelre |  |-  ( A e. ( ZZ>= ` 2 ) -> A e. RR ) | 
						
							| 34 | 33 | rehalfcld |  |-  ( A e. ( ZZ>= ` 2 ) -> ( A / 2 ) e. RR ) | 
						
							| 35 | 1 | nn0ge0d |  |-  ( A e. ( ZZ>= ` 2 ) -> 0 <_ A ) | 
						
							| 36 |  | 2re |  |-  2 e. RR | 
						
							| 37 |  | 2pos |  |-  0 < 2 | 
						
							| 38 | 36 37 | pm3.2i |  |-  ( 2 e. RR /\ 0 < 2 ) | 
						
							| 39 | 38 | a1i |  |-  ( A e. ( ZZ>= ` 2 ) -> ( 2 e. RR /\ 0 < 2 ) ) | 
						
							| 40 |  | divge0 |  |-  ( ( ( A e. RR /\ 0 <_ A ) /\ ( 2 e. RR /\ 0 < 2 ) ) -> 0 <_ ( A / 2 ) ) | 
						
							| 41 | 33 35 39 40 | syl21anc |  |-  ( A e. ( ZZ>= ` 2 ) -> 0 <_ ( A / 2 ) ) | 
						
							| 42 |  | flge0nn0 |  |-  ( ( ( A / 2 ) e. RR /\ 0 <_ ( A / 2 ) ) -> ( |_ ` ( A / 2 ) ) e. NN0 ) | 
						
							| 43 | 34 41 42 | syl2anc |  |-  ( A e. ( ZZ>= ` 2 ) -> ( |_ ` ( A / 2 ) ) e. NN0 ) | 
						
							| 44 | 43 | 3ad2ant2 |  |-  ( ( ( ( A + 1 ) / 2 ) e. NN0 /\ A e. ( ZZ>= ` 2 ) /\ I e. NN0 ) -> ( |_ ` ( A / 2 ) ) e. NN0 ) | 
						
							| 45 |  | nn0rp0 |  |-  ( ( |_ ` ( A / 2 ) ) e. NN0 -> ( |_ ` ( A / 2 ) ) e. ( 0 [,) +oo ) ) | 
						
							| 46 | 44 45 | syl |  |-  ( ( ( ( A + 1 ) / 2 ) e. NN0 /\ A e. ( ZZ>= ` 2 ) /\ I e. NN0 ) -> ( |_ ` ( A / 2 ) ) e. ( 0 [,) +oo ) ) | 
						
							| 47 |  | nn0digval |  |-  ( ( 2 e. NN /\ I e. NN0 /\ ( |_ ` ( A / 2 ) ) e. ( 0 [,) +oo ) ) -> ( I ( digit ` 2 ) ( |_ ` ( A / 2 ) ) ) = ( ( |_ ` ( ( |_ ` ( A / 2 ) ) / ( 2 ^ I ) ) ) mod 2 ) ) | 
						
							| 48 | 25 20 46 47 | syl3anc |  |-  ( ( ( ( A + 1 ) / 2 ) e. NN0 /\ A e. ( ZZ>= ` 2 ) /\ I e. NN0 ) -> ( I ( digit ` 2 ) ( |_ ` ( A / 2 ) ) ) = ( ( |_ ` ( ( |_ ` ( A / 2 ) ) / ( 2 ^ I ) ) ) mod 2 ) ) | 
						
							| 49 | 23 32 48 | 3eqtr4d |  |-  ( ( ( ( A + 1 ) / 2 ) e. NN0 /\ A e. ( ZZ>= ` 2 ) /\ I e. NN0 ) -> ( ( I + 1 ) ( digit ` 2 ) A ) = ( I ( digit ` 2 ) ( |_ ` ( A / 2 ) ) ) ) | 
						
							| 50 | 49 | 3exp |  |-  ( ( ( A + 1 ) / 2 ) e. NN0 -> ( A e. ( ZZ>= ` 2 ) -> ( I e. NN0 -> ( ( I + 1 ) ( digit ` 2 ) A ) = ( I ( digit ` 2 ) ( |_ ` ( A / 2 ) ) ) ) ) ) | 
						
							| 51 | 14 50 | jaoi |  |-  ( ( ( A / 2 ) e. NN0 \/ ( ( A + 1 ) / 2 ) e. NN0 ) -> ( A e. ( ZZ>= ` 2 ) -> ( I e. NN0 -> ( ( I + 1 ) ( digit ` 2 ) A ) = ( I ( digit ` 2 ) ( |_ ` ( A / 2 ) ) ) ) ) ) | 
						
							| 52 | 3 51 | mpcom |  |-  ( A e. ( ZZ>= ` 2 ) -> ( I e. NN0 -> ( ( I + 1 ) ( digit ` 2 ) A ) = ( I ( digit ` 2 ) ( |_ ` ( A / 2 ) ) ) ) ) | 
						
							| 53 | 52 | imp |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ I e. NN0 ) -> ( ( I + 1 ) ( digit ` 2 ) A ) = ( I ( digit ` 2 ) ( |_ ` ( A / 2 ) ) ) ) |