| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eluzge2nn0 |
|- ( A e. ( ZZ>= ` 2 ) -> A e. NN0 ) |
| 2 |
|
nn0eo |
|- ( A e. NN0 -> ( ( A / 2 ) e. NN0 \/ ( ( A + 1 ) / 2 ) e. NN0 ) ) |
| 3 |
1 2
|
syl |
|- ( A e. ( ZZ>= ` 2 ) -> ( ( A / 2 ) e. NN0 \/ ( ( A + 1 ) / 2 ) e. NN0 ) ) |
| 4 |
|
dignn0ehalf |
|- ( ( ( A / 2 ) e. NN0 /\ A e. NN0 /\ I e. NN0 ) -> ( ( I + 1 ) ( digit ` 2 ) A ) = ( I ( digit ` 2 ) ( A / 2 ) ) ) |
| 5 |
1 4
|
syl3an2 |
|- ( ( ( A / 2 ) e. NN0 /\ A e. ( ZZ>= ` 2 ) /\ I e. NN0 ) -> ( ( I + 1 ) ( digit ` 2 ) A ) = ( I ( digit ` 2 ) ( A / 2 ) ) ) |
| 6 |
|
eluzelz |
|- ( A e. ( ZZ>= ` 2 ) -> A e. ZZ ) |
| 7 |
|
nn0z |
|- ( ( A / 2 ) e. NN0 -> ( A / 2 ) e. ZZ ) |
| 8 |
|
zefldiv2 |
|- ( ( A e. ZZ /\ ( A / 2 ) e. ZZ ) -> ( |_ ` ( A / 2 ) ) = ( A / 2 ) ) |
| 9 |
6 7 8
|
syl2anr |
|- ( ( ( A / 2 ) e. NN0 /\ A e. ( ZZ>= ` 2 ) ) -> ( |_ ` ( A / 2 ) ) = ( A / 2 ) ) |
| 10 |
9
|
eqcomd |
|- ( ( ( A / 2 ) e. NN0 /\ A e. ( ZZ>= ` 2 ) ) -> ( A / 2 ) = ( |_ ` ( A / 2 ) ) ) |
| 11 |
10
|
3adant3 |
|- ( ( ( A / 2 ) e. NN0 /\ A e. ( ZZ>= ` 2 ) /\ I e. NN0 ) -> ( A / 2 ) = ( |_ ` ( A / 2 ) ) ) |
| 12 |
11
|
oveq2d |
|- ( ( ( A / 2 ) e. NN0 /\ A e. ( ZZ>= ` 2 ) /\ I e. NN0 ) -> ( I ( digit ` 2 ) ( A / 2 ) ) = ( I ( digit ` 2 ) ( |_ ` ( A / 2 ) ) ) ) |
| 13 |
5 12
|
eqtrd |
|- ( ( ( A / 2 ) e. NN0 /\ A e. ( ZZ>= ` 2 ) /\ I e. NN0 ) -> ( ( I + 1 ) ( digit ` 2 ) A ) = ( I ( digit ` 2 ) ( |_ ` ( A / 2 ) ) ) ) |
| 14 |
13
|
3exp |
|- ( ( A / 2 ) e. NN0 -> ( A e. ( ZZ>= ` 2 ) -> ( I e. NN0 -> ( ( I + 1 ) ( digit ` 2 ) A ) = ( I ( digit ` 2 ) ( |_ ` ( A / 2 ) ) ) ) ) ) |
| 15 |
6
|
3ad2ant2 |
|- ( ( ( ( A + 1 ) / 2 ) e. NN0 /\ A e. ( ZZ>= ` 2 ) /\ I e. NN0 ) -> A e. ZZ ) |
| 16 |
|
simp2 |
|- ( ( ( ( A + 1 ) / 2 ) e. NN0 /\ A e. ( ZZ>= ` 2 ) /\ I e. NN0 ) -> A e. ( ZZ>= ` 2 ) ) |
| 17 |
|
simp1 |
|- ( ( ( ( A + 1 ) / 2 ) e. NN0 /\ A e. ( ZZ>= ` 2 ) /\ I e. NN0 ) -> ( ( A + 1 ) / 2 ) e. NN0 ) |
| 18 |
|
nno |
|- ( ( A e. ( ZZ>= ` 2 ) /\ ( ( A + 1 ) / 2 ) e. NN0 ) -> ( ( A - 1 ) / 2 ) e. NN ) |
| 19 |
16 17 18
|
syl2anc |
|- ( ( ( ( A + 1 ) / 2 ) e. NN0 /\ A e. ( ZZ>= ` 2 ) /\ I e. NN0 ) -> ( ( A - 1 ) / 2 ) e. NN ) |
| 20 |
|
simp3 |
|- ( ( ( ( A + 1 ) / 2 ) e. NN0 /\ A e. ( ZZ>= ` 2 ) /\ I e. NN0 ) -> I e. NN0 ) |
| 21 |
|
dignn0flhalflem2 |
|- ( ( A e. ZZ /\ ( ( A - 1 ) / 2 ) e. NN /\ I e. NN0 ) -> ( |_ ` ( A / ( 2 ^ ( I + 1 ) ) ) ) = ( |_ ` ( ( |_ ` ( A / 2 ) ) / ( 2 ^ I ) ) ) ) |
| 22 |
15 19 20 21
|
syl3anc |
|- ( ( ( ( A + 1 ) / 2 ) e. NN0 /\ A e. ( ZZ>= ` 2 ) /\ I e. NN0 ) -> ( |_ ` ( A / ( 2 ^ ( I + 1 ) ) ) ) = ( |_ ` ( ( |_ ` ( A / 2 ) ) / ( 2 ^ I ) ) ) ) |
| 23 |
22
|
oveq1d |
|- ( ( ( ( A + 1 ) / 2 ) e. NN0 /\ A e. ( ZZ>= ` 2 ) /\ I e. NN0 ) -> ( ( |_ ` ( A / ( 2 ^ ( I + 1 ) ) ) ) mod 2 ) = ( ( |_ ` ( ( |_ ` ( A / 2 ) ) / ( 2 ^ I ) ) ) mod 2 ) ) |
| 24 |
|
2nn |
|- 2 e. NN |
| 25 |
24
|
a1i |
|- ( ( ( ( A + 1 ) / 2 ) e. NN0 /\ A e. ( ZZ>= ` 2 ) /\ I e. NN0 ) -> 2 e. NN ) |
| 26 |
|
peano2nn0 |
|- ( I e. NN0 -> ( I + 1 ) e. NN0 ) |
| 27 |
26
|
3ad2ant3 |
|- ( ( ( ( A + 1 ) / 2 ) e. NN0 /\ A e. ( ZZ>= ` 2 ) /\ I e. NN0 ) -> ( I + 1 ) e. NN0 ) |
| 28 |
|
nn0rp0 |
|- ( A e. NN0 -> A e. ( 0 [,) +oo ) ) |
| 29 |
1 28
|
syl |
|- ( A e. ( ZZ>= ` 2 ) -> A e. ( 0 [,) +oo ) ) |
| 30 |
29
|
3ad2ant2 |
|- ( ( ( ( A + 1 ) / 2 ) e. NN0 /\ A e. ( ZZ>= ` 2 ) /\ I e. NN0 ) -> A e. ( 0 [,) +oo ) ) |
| 31 |
|
nn0digval |
|- ( ( 2 e. NN /\ ( I + 1 ) e. NN0 /\ A e. ( 0 [,) +oo ) ) -> ( ( I + 1 ) ( digit ` 2 ) A ) = ( ( |_ ` ( A / ( 2 ^ ( I + 1 ) ) ) ) mod 2 ) ) |
| 32 |
25 27 30 31
|
syl3anc |
|- ( ( ( ( A + 1 ) / 2 ) e. NN0 /\ A e. ( ZZ>= ` 2 ) /\ I e. NN0 ) -> ( ( I + 1 ) ( digit ` 2 ) A ) = ( ( |_ ` ( A / ( 2 ^ ( I + 1 ) ) ) ) mod 2 ) ) |
| 33 |
|
eluzelre |
|- ( A e. ( ZZ>= ` 2 ) -> A e. RR ) |
| 34 |
33
|
rehalfcld |
|- ( A e. ( ZZ>= ` 2 ) -> ( A / 2 ) e. RR ) |
| 35 |
1
|
nn0ge0d |
|- ( A e. ( ZZ>= ` 2 ) -> 0 <_ A ) |
| 36 |
|
2re |
|- 2 e. RR |
| 37 |
|
2pos |
|- 0 < 2 |
| 38 |
36 37
|
pm3.2i |
|- ( 2 e. RR /\ 0 < 2 ) |
| 39 |
38
|
a1i |
|- ( A e. ( ZZ>= ` 2 ) -> ( 2 e. RR /\ 0 < 2 ) ) |
| 40 |
|
divge0 |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ ( 2 e. RR /\ 0 < 2 ) ) -> 0 <_ ( A / 2 ) ) |
| 41 |
33 35 39 40
|
syl21anc |
|- ( A e. ( ZZ>= ` 2 ) -> 0 <_ ( A / 2 ) ) |
| 42 |
|
flge0nn0 |
|- ( ( ( A / 2 ) e. RR /\ 0 <_ ( A / 2 ) ) -> ( |_ ` ( A / 2 ) ) e. NN0 ) |
| 43 |
34 41 42
|
syl2anc |
|- ( A e. ( ZZ>= ` 2 ) -> ( |_ ` ( A / 2 ) ) e. NN0 ) |
| 44 |
43
|
3ad2ant2 |
|- ( ( ( ( A + 1 ) / 2 ) e. NN0 /\ A e. ( ZZ>= ` 2 ) /\ I e. NN0 ) -> ( |_ ` ( A / 2 ) ) e. NN0 ) |
| 45 |
|
nn0rp0 |
|- ( ( |_ ` ( A / 2 ) ) e. NN0 -> ( |_ ` ( A / 2 ) ) e. ( 0 [,) +oo ) ) |
| 46 |
44 45
|
syl |
|- ( ( ( ( A + 1 ) / 2 ) e. NN0 /\ A e. ( ZZ>= ` 2 ) /\ I e. NN0 ) -> ( |_ ` ( A / 2 ) ) e. ( 0 [,) +oo ) ) |
| 47 |
|
nn0digval |
|- ( ( 2 e. NN /\ I e. NN0 /\ ( |_ ` ( A / 2 ) ) e. ( 0 [,) +oo ) ) -> ( I ( digit ` 2 ) ( |_ ` ( A / 2 ) ) ) = ( ( |_ ` ( ( |_ ` ( A / 2 ) ) / ( 2 ^ I ) ) ) mod 2 ) ) |
| 48 |
25 20 46 47
|
syl3anc |
|- ( ( ( ( A + 1 ) / 2 ) e. NN0 /\ A e. ( ZZ>= ` 2 ) /\ I e. NN0 ) -> ( I ( digit ` 2 ) ( |_ ` ( A / 2 ) ) ) = ( ( |_ ` ( ( |_ ` ( A / 2 ) ) / ( 2 ^ I ) ) ) mod 2 ) ) |
| 49 |
23 32 48
|
3eqtr4d |
|- ( ( ( ( A + 1 ) / 2 ) e. NN0 /\ A e. ( ZZ>= ` 2 ) /\ I e. NN0 ) -> ( ( I + 1 ) ( digit ` 2 ) A ) = ( I ( digit ` 2 ) ( |_ ` ( A / 2 ) ) ) ) |
| 50 |
49
|
3exp |
|- ( ( ( A + 1 ) / 2 ) e. NN0 -> ( A e. ( ZZ>= ` 2 ) -> ( I e. NN0 -> ( ( I + 1 ) ( digit ` 2 ) A ) = ( I ( digit ` 2 ) ( |_ ` ( A / 2 ) ) ) ) ) ) |
| 51 |
14 50
|
jaoi |
|- ( ( ( A / 2 ) e. NN0 \/ ( ( A + 1 ) / 2 ) e. NN0 ) -> ( A e. ( ZZ>= ` 2 ) -> ( I e. NN0 -> ( ( I + 1 ) ( digit ` 2 ) A ) = ( I ( digit ` 2 ) ( |_ ` ( A / 2 ) ) ) ) ) ) |
| 52 |
3 51
|
mpcom |
|- ( A e. ( ZZ>= ` 2 ) -> ( I e. NN0 -> ( ( I + 1 ) ( digit ` 2 ) A ) = ( I ( digit ` 2 ) ( |_ ` ( A / 2 ) ) ) ) ) |
| 53 |
52
|
imp |
|- ( ( A e. ( ZZ>= ` 2 ) /\ I e. NN0 ) -> ( ( I + 1 ) ( digit ` 2 ) A ) = ( I ( digit ` 2 ) ( |_ ` ( A / 2 ) ) ) ) |