| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eluzge2nn0 | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  𝐴  ∈  ℕ0 ) | 
						
							| 2 |  | nn0eo | ⊢ ( 𝐴  ∈  ℕ0  →  ( ( 𝐴  /  2 )  ∈  ℕ0  ∨  ( ( 𝐴  +  1 )  /  2 )  ∈  ℕ0 ) ) | 
						
							| 3 | 1 2 | syl | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  ( ( 𝐴  /  2 )  ∈  ℕ0  ∨  ( ( 𝐴  +  1 )  /  2 )  ∈  ℕ0 ) ) | 
						
							| 4 |  | dignn0ehalf | ⊢ ( ( ( 𝐴  /  2 )  ∈  ℕ0  ∧  𝐴  ∈  ℕ0  ∧  𝐼  ∈  ℕ0 )  →  ( ( 𝐼  +  1 ) ( digit ‘ 2 ) 𝐴 )  =  ( 𝐼 ( digit ‘ 2 ) ( 𝐴  /  2 ) ) ) | 
						
							| 5 | 1 4 | syl3an2 | ⊢ ( ( ( 𝐴  /  2 )  ∈  ℕ0  ∧  𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝐼  ∈  ℕ0 )  →  ( ( 𝐼  +  1 ) ( digit ‘ 2 ) 𝐴 )  =  ( 𝐼 ( digit ‘ 2 ) ( 𝐴  /  2 ) ) ) | 
						
							| 6 |  | eluzelz | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  𝐴  ∈  ℤ ) | 
						
							| 7 |  | nn0z | ⊢ ( ( 𝐴  /  2 )  ∈  ℕ0  →  ( 𝐴  /  2 )  ∈  ℤ ) | 
						
							| 8 |  | zefldiv2 | ⊢ ( ( 𝐴  ∈  ℤ  ∧  ( 𝐴  /  2 )  ∈  ℤ )  →  ( ⌊ ‘ ( 𝐴  /  2 ) )  =  ( 𝐴  /  2 ) ) | 
						
							| 9 | 6 7 8 | syl2anr | ⊢ ( ( ( 𝐴  /  2 )  ∈  ℕ0  ∧  𝐴  ∈  ( ℤ≥ ‘ 2 ) )  →  ( ⌊ ‘ ( 𝐴  /  2 ) )  =  ( 𝐴  /  2 ) ) | 
						
							| 10 | 9 | eqcomd | ⊢ ( ( ( 𝐴  /  2 )  ∈  ℕ0  ∧  𝐴  ∈  ( ℤ≥ ‘ 2 ) )  →  ( 𝐴  /  2 )  =  ( ⌊ ‘ ( 𝐴  /  2 ) ) ) | 
						
							| 11 | 10 | 3adant3 | ⊢ ( ( ( 𝐴  /  2 )  ∈  ℕ0  ∧  𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝐼  ∈  ℕ0 )  →  ( 𝐴  /  2 )  =  ( ⌊ ‘ ( 𝐴  /  2 ) ) ) | 
						
							| 12 | 11 | oveq2d | ⊢ ( ( ( 𝐴  /  2 )  ∈  ℕ0  ∧  𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝐼  ∈  ℕ0 )  →  ( 𝐼 ( digit ‘ 2 ) ( 𝐴  /  2 ) )  =  ( 𝐼 ( digit ‘ 2 ) ( ⌊ ‘ ( 𝐴  /  2 ) ) ) ) | 
						
							| 13 | 5 12 | eqtrd | ⊢ ( ( ( 𝐴  /  2 )  ∈  ℕ0  ∧  𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝐼  ∈  ℕ0 )  →  ( ( 𝐼  +  1 ) ( digit ‘ 2 ) 𝐴 )  =  ( 𝐼 ( digit ‘ 2 ) ( ⌊ ‘ ( 𝐴  /  2 ) ) ) ) | 
						
							| 14 | 13 | 3exp | ⊢ ( ( 𝐴  /  2 )  ∈  ℕ0  →  ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝐼  ∈  ℕ0  →  ( ( 𝐼  +  1 ) ( digit ‘ 2 ) 𝐴 )  =  ( 𝐼 ( digit ‘ 2 ) ( ⌊ ‘ ( 𝐴  /  2 ) ) ) ) ) ) | 
						
							| 15 | 6 | 3ad2ant2 | ⊢ ( ( ( ( 𝐴  +  1 )  /  2 )  ∈  ℕ0  ∧  𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝐼  ∈  ℕ0 )  →  𝐴  ∈  ℤ ) | 
						
							| 16 |  | simp2 | ⊢ ( ( ( ( 𝐴  +  1 )  /  2 )  ∈  ℕ0  ∧  𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝐼  ∈  ℕ0 )  →  𝐴  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 17 |  | simp1 | ⊢ ( ( ( ( 𝐴  +  1 )  /  2 )  ∈  ℕ0  ∧  𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝐼  ∈  ℕ0 )  →  ( ( 𝐴  +  1 )  /  2 )  ∈  ℕ0 ) | 
						
							| 18 |  | nno | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  ( ( 𝐴  +  1 )  /  2 )  ∈  ℕ0 )  →  ( ( 𝐴  −  1 )  /  2 )  ∈  ℕ ) | 
						
							| 19 | 16 17 18 | syl2anc | ⊢ ( ( ( ( 𝐴  +  1 )  /  2 )  ∈  ℕ0  ∧  𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝐼  ∈  ℕ0 )  →  ( ( 𝐴  −  1 )  /  2 )  ∈  ℕ ) | 
						
							| 20 |  | simp3 | ⊢ ( ( ( ( 𝐴  +  1 )  /  2 )  ∈  ℕ0  ∧  𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝐼  ∈  ℕ0 )  →  𝐼  ∈  ℕ0 ) | 
						
							| 21 |  | dignn0flhalflem2 | ⊢ ( ( 𝐴  ∈  ℤ  ∧  ( ( 𝐴  −  1 )  /  2 )  ∈  ℕ  ∧  𝐼  ∈  ℕ0 )  →  ( ⌊ ‘ ( 𝐴  /  ( 2 ↑ ( 𝐼  +  1 ) ) ) )  =  ( ⌊ ‘ ( ( ⌊ ‘ ( 𝐴  /  2 ) )  /  ( 2 ↑ 𝐼 ) ) ) ) | 
						
							| 22 | 15 19 20 21 | syl3anc | ⊢ ( ( ( ( 𝐴  +  1 )  /  2 )  ∈  ℕ0  ∧  𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝐼  ∈  ℕ0 )  →  ( ⌊ ‘ ( 𝐴  /  ( 2 ↑ ( 𝐼  +  1 ) ) ) )  =  ( ⌊ ‘ ( ( ⌊ ‘ ( 𝐴  /  2 ) )  /  ( 2 ↑ 𝐼 ) ) ) ) | 
						
							| 23 | 22 | oveq1d | ⊢ ( ( ( ( 𝐴  +  1 )  /  2 )  ∈  ℕ0  ∧  𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝐼  ∈  ℕ0 )  →  ( ( ⌊ ‘ ( 𝐴  /  ( 2 ↑ ( 𝐼  +  1 ) ) ) )  mod  2 )  =  ( ( ⌊ ‘ ( ( ⌊ ‘ ( 𝐴  /  2 ) )  /  ( 2 ↑ 𝐼 ) ) )  mod  2 ) ) | 
						
							| 24 |  | 2nn | ⊢ 2  ∈  ℕ | 
						
							| 25 | 24 | a1i | ⊢ ( ( ( ( 𝐴  +  1 )  /  2 )  ∈  ℕ0  ∧  𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝐼  ∈  ℕ0 )  →  2  ∈  ℕ ) | 
						
							| 26 |  | peano2nn0 | ⊢ ( 𝐼  ∈  ℕ0  →  ( 𝐼  +  1 )  ∈  ℕ0 ) | 
						
							| 27 | 26 | 3ad2ant3 | ⊢ ( ( ( ( 𝐴  +  1 )  /  2 )  ∈  ℕ0  ∧  𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝐼  ∈  ℕ0 )  →  ( 𝐼  +  1 )  ∈  ℕ0 ) | 
						
							| 28 |  | nn0rp0 | ⊢ ( 𝐴  ∈  ℕ0  →  𝐴  ∈  ( 0 [,) +∞ ) ) | 
						
							| 29 | 1 28 | syl | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  𝐴  ∈  ( 0 [,) +∞ ) ) | 
						
							| 30 | 29 | 3ad2ant2 | ⊢ ( ( ( ( 𝐴  +  1 )  /  2 )  ∈  ℕ0  ∧  𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝐼  ∈  ℕ0 )  →  𝐴  ∈  ( 0 [,) +∞ ) ) | 
						
							| 31 |  | nn0digval | ⊢ ( ( 2  ∈  ℕ  ∧  ( 𝐼  +  1 )  ∈  ℕ0  ∧  𝐴  ∈  ( 0 [,) +∞ ) )  →  ( ( 𝐼  +  1 ) ( digit ‘ 2 ) 𝐴 )  =  ( ( ⌊ ‘ ( 𝐴  /  ( 2 ↑ ( 𝐼  +  1 ) ) ) )  mod  2 ) ) | 
						
							| 32 | 25 27 30 31 | syl3anc | ⊢ ( ( ( ( 𝐴  +  1 )  /  2 )  ∈  ℕ0  ∧  𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝐼  ∈  ℕ0 )  →  ( ( 𝐼  +  1 ) ( digit ‘ 2 ) 𝐴 )  =  ( ( ⌊ ‘ ( 𝐴  /  ( 2 ↑ ( 𝐼  +  1 ) ) ) )  mod  2 ) ) | 
						
							| 33 |  | eluzelre | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  𝐴  ∈  ℝ ) | 
						
							| 34 | 33 | rehalfcld | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝐴  /  2 )  ∈  ℝ ) | 
						
							| 35 | 1 | nn0ge0d | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  0  ≤  𝐴 ) | 
						
							| 36 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 37 |  | 2pos | ⊢ 0  <  2 | 
						
							| 38 | 36 37 | pm3.2i | ⊢ ( 2  ∈  ℝ  ∧  0  <  2 ) | 
						
							| 39 | 38 | a1i | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  ( 2  ∈  ℝ  ∧  0  <  2 ) ) | 
						
							| 40 |  | divge0 | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  ∧  ( 2  ∈  ℝ  ∧  0  <  2 ) )  →  0  ≤  ( 𝐴  /  2 ) ) | 
						
							| 41 | 33 35 39 40 | syl21anc | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  0  ≤  ( 𝐴  /  2 ) ) | 
						
							| 42 |  | flge0nn0 | ⊢ ( ( ( 𝐴  /  2 )  ∈  ℝ  ∧  0  ≤  ( 𝐴  /  2 ) )  →  ( ⌊ ‘ ( 𝐴  /  2 ) )  ∈  ℕ0 ) | 
						
							| 43 | 34 41 42 | syl2anc | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  ( ⌊ ‘ ( 𝐴  /  2 ) )  ∈  ℕ0 ) | 
						
							| 44 | 43 | 3ad2ant2 | ⊢ ( ( ( ( 𝐴  +  1 )  /  2 )  ∈  ℕ0  ∧  𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝐼  ∈  ℕ0 )  →  ( ⌊ ‘ ( 𝐴  /  2 ) )  ∈  ℕ0 ) | 
						
							| 45 |  | nn0rp0 | ⊢ ( ( ⌊ ‘ ( 𝐴  /  2 ) )  ∈  ℕ0  →  ( ⌊ ‘ ( 𝐴  /  2 ) )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 46 | 44 45 | syl | ⊢ ( ( ( ( 𝐴  +  1 )  /  2 )  ∈  ℕ0  ∧  𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝐼  ∈  ℕ0 )  →  ( ⌊ ‘ ( 𝐴  /  2 ) )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 47 |  | nn0digval | ⊢ ( ( 2  ∈  ℕ  ∧  𝐼  ∈  ℕ0  ∧  ( ⌊ ‘ ( 𝐴  /  2 ) )  ∈  ( 0 [,) +∞ ) )  →  ( 𝐼 ( digit ‘ 2 ) ( ⌊ ‘ ( 𝐴  /  2 ) ) )  =  ( ( ⌊ ‘ ( ( ⌊ ‘ ( 𝐴  /  2 ) )  /  ( 2 ↑ 𝐼 ) ) )  mod  2 ) ) | 
						
							| 48 | 25 20 46 47 | syl3anc | ⊢ ( ( ( ( 𝐴  +  1 )  /  2 )  ∈  ℕ0  ∧  𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝐼  ∈  ℕ0 )  →  ( 𝐼 ( digit ‘ 2 ) ( ⌊ ‘ ( 𝐴  /  2 ) ) )  =  ( ( ⌊ ‘ ( ( ⌊ ‘ ( 𝐴  /  2 ) )  /  ( 2 ↑ 𝐼 ) ) )  mod  2 ) ) | 
						
							| 49 | 23 32 48 | 3eqtr4d | ⊢ ( ( ( ( 𝐴  +  1 )  /  2 )  ∈  ℕ0  ∧  𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝐼  ∈  ℕ0 )  →  ( ( 𝐼  +  1 ) ( digit ‘ 2 ) 𝐴 )  =  ( 𝐼 ( digit ‘ 2 ) ( ⌊ ‘ ( 𝐴  /  2 ) ) ) ) | 
						
							| 50 | 49 | 3exp | ⊢ ( ( ( 𝐴  +  1 )  /  2 )  ∈  ℕ0  →  ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝐼  ∈  ℕ0  →  ( ( 𝐼  +  1 ) ( digit ‘ 2 ) 𝐴 )  =  ( 𝐼 ( digit ‘ 2 ) ( ⌊ ‘ ( 𝐴  /  2 ) ) ) ) ) ) | 
						
							| 51 | 14 50 | jaoi | ⊢ ( ( ( 𝐴  /  2 )  ∈  ℕ0  ∨  ( ( 𝐴  +  1 )  /  2 )  ∈  ℕ0 )  →  ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝐼  ∈  ℕ0  →  ( ( 𝐼  +  1 ) ( digit ‘ 2 ) 𝐴 )  =  ( 𝐼 ( digit ‘ 2 ) ( ⌊ ‘ ( 𝐴  /  2 ) ) ) ) ) ) | 
						
							| 52 | 3 51 | mpcom | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝐼  ∈  ℕ0  →  ( ( 𝐼  +  1 ) ( digit ‘ 2 ) 𝐴 )  =  ( 𝐼 ( digit ‘ 2 ) ( ⌊ ‘ ( 𝐴  /  2 ) ) ) ) ) | 
						
							| 53 | 52 | imp | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝐼  ∈  ℕ0 )  →  ( ( 𝐼  +  1 ) ( digit ‘ 2 ) 𝐴 )  =  ( 𝐼 ( digit ‘ 2 ) ( ⌊ ‘ ( 𝐴  /  2 ) ) ) ) |