| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zre |
⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℝ ) |
| 2 |
1
|
rehalfcld |
⊢ ( 𝐴 ∈ ℤ → ( 𝐴 / 2 ) ∈ ℝ ) |
| 3 |
2
|
flcld |
⊢ ( 𝐴 ∈ ℤ → ( ⌊ ‘ ( 𝐴 / 2 ) ) ∈ ℤ ) |
| 4 |
3
|
zred |
⊢ ( 𝐴 ∈ ℤ → ( ⌊ ‘ ( 𝐴 / 2 ) ) ∈ ℝ ) |
| 5 |
4
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( ( 𝐴 − 1 ) / 2 ) ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( ⌊ ‘ ( 𝐴 / 2 ) ) ∈ ℝ ) |
| 6 |
|
2re |
⊢ 2 ∈ ℝ |
| 7 |
6
|
a1i |
⊢ ( 𝑁 ∈ ℕ0 → 2 ∈ ℝ ) |
| 8 |
|
id |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℕ0 ) |
| 9 |
7 8
|
reexpcld |
⊢ ( 𝑁 ∈ ℕ0 → ( 2 ↑ 𝑁 ) ∈ ℝ ) |
| 10 |
9
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( ( 𝐴 − 1 ) / 2 ) ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 2 ↑ 𝑁 ) ∈ ℝ ) |
| 11 |
|
2cnd |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( ( 𝐴 − 1 ) / 2 ) ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → 2 ∈ ℂ ) |
| 12 |
|
2ne0 |
⊢ 2 ≠ 0 |
| 13 |
12
|
a1i |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( ( 𝐴 − 1 ) / 2 ) ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → 2 ≠ 0 ) |
| 14 |
|
nn0z |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ ) |
| 15 |
14
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( ( 𝐴 − 1 ) / 2 ) ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℤ ) |
| 16 |
11 13 15
|
expne0d |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( ( 𝐴 − 1 ) / 2 ) ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 2 ↑ 𝑁 ) ≠ 0 ) |
| 17 |
5 10 16
|
redivcld |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( ( 𝐴 − 1 ) / 2 ) ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( ( ⌊ ‘ ( 𝐴 / 2 ) ) / ( 2 ↑ 𝑁 ) ) ∈ ℝ ) |
| 18 |
17
|
flcld |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( ( 𝐴 − 1 ) / 2 ) ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( ⌊ ‘ ( ( ⌊ ‘ ( 𝐴 / 2 ) ) / ( 2 ↑ 𝑁 ) ) ) ∈ ℤ ) |
| 19 |
1
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( ( 𝐴 − 1 ) / 2 ) ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → 𝐴 ∈ ℝ ) |
| 20 |
6
|
a1i |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( ( 𝐴 − 1 ) / 2 ) ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → 2 ∈ ℝ ) |
| 21 |
|
simp3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( ( 𝐴 − 1 ) / 2 ) ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℕ0 ) |
| 22 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
| 23 |
22
|
a1i |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( ( 𝐴 − 1 ) / 2 ) ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → 1 ∈ ℕ0 ) |
| 24 |
21 23
|
nn0addcld |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( ( 𝐴 − 1 ) / 2 ) ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 + 1 ) ∈ ℕ0 ) |
| 25 |
20 24
|
reexpcld |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( ( 𝐴 − 1 ) / 2 ) ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 2 ↑ ( 𝑁 + 1 ) ) ∈ ℝ ) |
| 26 |
15
|
peano2zd |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( ( 𝐴 − 1 ) / 2 ) ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 + 1 ) ∈ ℤ ) |
| 27 |
11 13 26
|
expne0d |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( ( 𝐴 − 1 ) / 2 ) ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 2 ↑ ( 𝑁 + 1 ) ) ≠ 0 ) |
| 28 |
19 25 27
|
redivcld |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( ( 𝐴 − 1 ) / 2 ) ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 / ( 2 ↑ ( 𝑁 + 1 ) ) ) ∈ ℝ ) |
| 29 |
28
|
flcld |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( ( 𝐴 − 1 ) / 2 ) ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( ⌊ ‘ ( 𝐴 / ( 2 ↑ ( 𝑁 + 1 ) ) ) ) ∈ ℤ ) |
| 30 |
|
nn0p1nn |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℕ ) |
| 31 |
|
dignn0flhalflem1 |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( ( 𝐴 − 1 ) / 2 ) ∈ ℕ ∧ ( 𝑁 + 1 ) ∈ ℕ ) → ( ⌊ ‘ ( ( 𝐴 / ( 2 ↑ ( 𝑁 + 1 ) ) ) − 1 ) ) < ( ⌊ ‘ ( ( 𝐴 − 1 ) / ( 2 ↑ ( 𝑁 + 1 ) ) ) ) ) |
| 32 |
30 31
|
syl3an3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( ( 𝐴 − 1 ) / 2 ) ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( ⌊ ‘ ( ( 𝐴 / ( 2 ↑ ( 𝑁 + 1 ) ) ) − 1 ) ) < ( ⌊ ‘ ( ( 𝐴 − 1 ) / ( 2 ↑ ( 𝑁 + 1 ) ) ) ) ) |
| 33 |
|
1zzd |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( ( 𝐴 − 1 ) / 2 ) ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → 1 ∈ ℤ ) |
| 34 |
|
flsubz |
⊢ ( ( ( 𝐴 / ( 2 ↑ ( 𝑁 + 1 ) ) ) ∈ ℝ ∧ 1 ∈ ℤ ) → ( ⌊ ‘ ( ( 𝐴 / ( 2 ↑ ( 𝑁 + 1 ) ) ) − 1 ) ) = ( ( ⌊ ‘ ( 𝐴 / ( 2 ↑ ( 𝑁 + 1 ) ) ) ) − 1 ) ) |
| 35 |
28 33 34
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( ( 𝐴 − 1 ) / 2 ) ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( ⌊ ‘ ( ( 𝐴 / ( 2 ↑ ( 𝑁 + 1 ) ) ) − 1 ) ) = ( ( ⌊ ‘ ( 𝐴 / ( 2 ↑ ( 𝑁 + 1 ) ) ) ) − 1 ) ) |
| 36 |
35
|
eqcomd |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( ( 𝐴 − 1 ) / 2 ) ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( ( ⌊ ‘ ( 𝐴 / ( 2 ↑ ( 𝑁 + 1 ) ) ) ) − 1 ) = ( ⌊ ‘ ( ( 𝐴 / ( 2 ↑ ( 𝑁 + 1 ) ) ) − 1 ) ) ) |
| 37 |
|
nnz |
⊢ ( ( ( 𝐴 − 1 ) / 2 ) ∈ ℕ → ( ( 𝐴 − 1 ) / 2 ) ∈ ℤ ) |
| 38 |
|
zob |
⊢ ( 𝐴 ∈ ℤ → ( ( ( 𝐴 + 1 ) / 2 ) ∈ ℤ ↔ ( ( 𝐴 − 1 ) / 2 ) ∈ ℤ ) ) |
| 39 |
37 38
|
imbitrrid |
⊢ ( 𝐴 ∈ ℤ → ( ( ( 𝐴 − 1 ) / 2 ) ∈ ℕ → ( ( 𝐴 + 1 ) / 2 ) ∈ ℤ ) ) |
| 40 |
39
|
imp |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( ( 𝐴 − 1 ) / 2 ) ∈ ℕ ) → ( ( 𝐴 + 1 ) / 2 ) ∈ ℤ ) |
| 41 |
|
zofldiv2 |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( ( 𝐴 + 1 ) / 2 ) ∈ ℤ ) → ( ⌊ ‘ ( 𝐴 / 2 ) ) = ( ( 𝐴 − 1 ) / 2 ) ) |
| 42 |
40 41
|
syldan |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( ( 𝐴 − 1 ) / 2 ) ∈ ℕ ) → ( ⌊ ‘ ( 𝐴 / 2 ) ) = ( ( 𝐴 − 1 ) / 2 ) ) |
| 43 |
42
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( ( 𝐴 − 1 ) / 2 ) ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( ⌊ ‘ ( 𝐴 / 2 ) ) = ( ( 𝐴 − 1 ) / 2 ) ) |
| 44 |
43
|
fvoveq1d |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( ( 𝐴 − 1 ) / 2 ) ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( ⌊ ‘ ( ( ⌊ ‘ ( 𝐴 / 2 ) ) / ( 2 ↑ 𝑁 ) ) ) = ( ⌊ ‘ ( ( ( 𝐴 − 1 ) / 2 ) / ( 2 ↑ 𝑁 ) ) ) ) |
| 45 |
|
zcn |
⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℂ ) |
| 46 |
|
1cnd |
⊢ ( 𝐴 ∈ ℤ → 1 ∈ ℂ ) |
| 47 |
45 46
|
subcld |
⊢ ( 𝐴 ∈ ℤ → ( 𝐴 − 1 ) ∈ ℂ ) |
| 48 |
|
2rp |
⊢ 2 ∈ ℝ+ |
| 49 |
48
|
a1i |
⊢ ( ( ( 𝐴 − 1 ) / 2 ) ∈ ℕ → 2 ∈ ℝ+ ) |
| 50 |
49
|
rpcnne0d |
⊢ ( ( ( 𝐴 − 1 ) / 2 ) ∈ ℕ → ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) |
| 51 |
48
|
a1i |
⊢ ( 𝑁 ∈ ℕ0 → 2 ∈ ℝ+ ) |
| 52 |
51 14
|
rpexpcld |
⊢ ( 𝑁 ∈ ℕ0 → ( 2 ↑ 𝑁 ) ∈ ℝ+ ) |
| 53 |
52
|
rpcnne0d |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 2 ↑ 𝑁 ) ∈ ℂ ∧ ( 2 ↑ 𝑁 ) ≠ 0 ) ) |
| 54 |
|
divdiv1 |
⊢ ( ( ( 𝐴 − 1 ) ∈ ℂ ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ∧ ( ( 2 ↑ 𝑁 ) ∈ ℂ ∧ ( 2 ↑ 𝑁 ) ≠ 0 ) ) → ( ( ( 𝐴 − 1 ) / 2 ) / ( 2 ↑ 𝑁 ) ) = ( ( 𝐴 − 1 ) / ( 2 · ( 2 ↑ 𝑁 ) ) ) ) |
| 55 |
47 50 53 54
|
syl3an |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( ( 𝐴 − 1 ) / 2 ) ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( ( ( 𝐴 − 1 ) / 2 ) / ( 2 ↑ 𝑁 ) ) = ( ( 𝐴 − 1 ) / ( 2 · ( 2 ↑ 𝑁 ) ) ) ) |
| 56 |
10
|
recnd |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( ( 𝐴 − 1 ) / 2 ) ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 2 ↑ 𝑁 ) ∈ ℂ ) |
| 57 |
11 56
|
mulcomd |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( ( 𝐴 − 1 ) / 2 ) ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 2 · ( 2 ↑ 𝑁 ) ) = ( ( 2 ↑ 𝑁 ) · 2 ) ) |
| 58 |
11 21
|
expp1d |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( ( 𝐴 − 1 ) / 2 ) ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 2 ↑ ( 𝑁 + 1 ) ) = ( ( 2 ↑ 𝑁 ) · 2 ) ) |
| 59 |
57 58
|
eqtr4d |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( ( 𝐴 − 1 ) / 2 ) ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 2 · ( 2 ↑ 𝑁 ) ) = ( 2 ↑ ( 𝑁 + 1 ) ) ) |
| 60 |
59
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( ( 𝐴 − 1 ) / 2 ) ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐴 − 1 ) / ( 2 · ( 2 ↑ 𝑁 ) ) ) = ( ( 𝐴 − 1 ) / ( 2 ↑ ( 𝑁 + 1 ) ) ) ) |
| 61 |
55 60
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( ( 𝐴 − 1 ) / 2 ) ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( ( ( 𝐴 − 1 ) / 2 ) / ( 2 ↑ 𝑁 ) ) = ( ( 𝐴 − 1 ) / ( 2 ↑ ( 𝑁 + 1 ) ) ) ) |
| 62 |
61
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( ( 𝐴 − 1 ) / 2 ) ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( ⌊ ‘ ( ( ( 𝐴 − 1 ) / 2 ) / ( 2 ↑ 𝑁 ) ) ) = ( ⌊ ‘ ( ( 𝐴 − 1 ) / ( 2 ↑ ( 𝑁 + 1 ) ) ) ) ) |
| 63 |
44 62
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( ( 𝐴 − 1 ) / 2 ) ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( ⌊ ‘ ( ( ⌊ ‘ ( 𝐴 / 2 ) ) / ( 2 ↑ 𝑁 ) ) ) = ( ⌊ ‘ ( ( 𝐴 − 1 ) / ( 2 ↑ ( 𝑁 + 1 ) ) ) ) ) |
| 64 |
32 36 63
|
3brtr4d |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( ( 𝐴 − 1 ) / 2 ) ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( ( ⌊ ‘ ( 𝐴 / ( 2 ↑ ( 𝑁 + 1 ) ) ) ) − 1 ) < ( ⌊ ‘ ( ( ⌊ ‘ ( 𝐴 / 2 ) ) / ( 2 ↑ 𝑁 ) ) ) ) |
| 65 |
19
|
rehalfcld |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( ( 𝐴 − 1 ) / 2 ) ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 / 2 ) ∈ ℝ ) |
| 66 |
65 10 16
|
redivcld |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( ( 𝐴 − 1 ) / 2 ) ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐴 / 2 ) / ( 2 ↑ 𝑁 ) ) ∈ ℝ ) |
| 67 |
|
reflcl |
⊢ ( ( 𝐴 / 2 ) ∈ ℝ → ( ⌊ ‘ ( 𝐴 / 2 ) ) ∈ ℝ ) |
| 68 |
65 67
|
syl |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( ( 𝐴 − 1 ) / 2 ) ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( ⌊ ‘ ( 𝐴 / 2 ) ) ∈ ℝ ) |
| 69 |
48
|
a1i |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( ( 𝐴 − 1 ) / 2 ) ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → 2 ∈ ℝ+ ) |
| 70 |
69 15
|
rpexpcld |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( ( 𝐴 − 1 ) / 2 ) ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 2 ↑ 𝑁 ) ∈ ℝ+ ) |
| 71 |
|
flle |
⊢ ( ( 𝐴 / 2 ) ∈ ℝ → ( ⌊ ‘ ( 𝐴 / 2 ) ) ≤ ( 𝐴 / 2 ) ) |
| 72 |
65 71
|
syl |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( ( 𝐴 − 1 ) / 2 ) ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( ⌊ ‘ ( 𝐴 / 2 ) ) ≤ ( 𝐴 / 2 ) ) |
| 73 |
68 65 70 72
|
lediv1dd |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( ( 𝐴 − 1 ) / 2 ) ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( ( ⌊ ‘ ( 𝐴 / 2 ) ) / ( 2 ↑ 𝑁 ) ) ≤ ( ( 𝐴 / 2 ) / ( 2 ↑ 𝑁 ) ) ) |
| 74 |
|
flwordi |
⊢ ( ( ( ( ⌊ ‘ ( 𝐴 / 2 ) ) / ( 2 ↑ 𝑁 ) ) ∈ ℝ ∧ ( ( 𝐴 / 2 ) / ( 2 ↑ 𝑁 ) ) ∈ ℝ ∧ ( ( ⌊ ‘ ( 𝐴 / 2 ) ) / ( 2 ↑ 𝑁 ) ) ≤ ( ( 𝐴 / 2 ) / ( 2 ↑ 𝑁 ) ) ) → ( ⌊ ‘ ( ( ⌊ ‘ ( 𝐴 / 2 ) ) / ( 2 ↑ 𝑁 ) ) ) ≤ ( ⌊ ‘ ( ( 𝐴 / 2 ) / ( 2 ↑ 𝑁 ) ) ) ) |
| 75 |
17 66 73 74
|
syl3anc |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( ( 𝐴 − 1 ) / 2 ) ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( ⌊ ‘ ( ( ⌊ ‘ ( 𝐴 / 2 ) ) / ( 2 ↑ 𝑁 ) ) ) ≤ ( ⌊ ‘ ( ( 𝐴 / 2 ) / ( 2 ↑ 𝑁 ) ) ) ) |
| 76 |
|
divdiv1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ∧ ( ( 2 ↑ 𝑁 ) ∈ ℂ ∧ ( 2 ↑ 𝑁 ) ≠ 0 ) ) → ( ( 𝐴 / 2 ) / ( 2 ↑ 𝑁 ) ) = ( 𝐴 / ( 2 · ( 2 ↑ 𝑁 ) ) ) ) |
| 77 |
45 50 53 76
|
syl3an |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( ( 𝐴 − 1 ) / 2 ) ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐴 / 2 ) / ( 2 ↑ 𝑁 ) ) = ( 𝐴 / ( 2 · ( 2 ↑ 𝑁 ) ) ) ) |
| 78 |
52
|
rpcnd |
⊢ ( 𝑁 ∈ ℕ0 → ( 2 ↑ 𝑁 ) ∈ ℂ ) |
| 79 |
78
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( ( 𝐴 − 1 ) / 2 ) ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 2 ↑ 𝑁 ) ∈ ℂ ) |
| 80 |
11 79
|
mulcomd |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( ( 𝐴 − 1 ) / 2 ) ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 2 · ( 2 ↑ 𝑁 ) ) = ( ( 2 ↑ 𝑁 ) · 2 ) ) |
| 81 |
11 13 15
|
expp1zd |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( ( 𝐴 − 1 ) / 2 ) ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 2 ↑ ( 𝑁 + 1 ) ) = ( ( 2 ↑ 𝑁 ) · 2 ) ) |
| 82 |
80 81
|
eqtr4d |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( ( 𝐴 − 1 ) / 2 ) ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 2 · ( 2 ↑ 𝑁 ) ) = ( 2 ↑ ( 𝑁 + 1 ) ) ) |
| 83 |
82
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( ( 𝐴 − 1 ) / 2 ) ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 / ( 2 · ( 2 ↑ 𝑁 ) ) ) = ( 𝐴 / ( 2 ↑ ( 𝑁 + 1 ) ) ) ) |
| 84 |
77 83
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( ( 𝐴 − 1 ) / 2 ) ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐴 / 2 ) / ( 2 ↑ 𝑁 ) ) = ( 𝐴 / ( 2 ↑ ( 𝑁 + 1 ) ) ) ) |
| 85 |
84
|
eqcomd |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( ( 𝐴 − 1 ) / 2 ) ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 / ( 2 ↑ ( 𝑁 + 1 ) ) ) = ( ( 𝐴 / 2 ) / ( 2 ↑ 𝑁 ) ) ) |
| 86 |
85
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( ( 𝐴 − 1 ) / 2 ) ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( ⌊ ‘ ( 𝐴 / ( 2 ↑ ( 𝑁 + 1 ) ) ) ) = ( ⌊ ‘ ( ( 𝐴 / 2 ) / ( 2 ↑ 𝑁 ) ) ) ) |
| 87 |
75 86
|
breqtrrd |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( ( 𝐴 − 1 ) / 2 ) ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( ⌊ ‘ ( ( ⌊ ‘ ( 𝐴 / 2 ) ) / ( 2 ↑ 𝑁 ) ) ) ≤ ( ⌊ ‘ ( 𝐴 / ( 2 ↑ ( 𝑁 + 1 ) ) ) ) ) |
| 88 |
|
zgtp1leeq |
⊢ ( ( ( ⌊ ‘ ( ( ⌊ ‘ ( 𝐴 / 2 ) ) / ( 2 ↑ 𝑁 ) ) ) ∈ ℤ ∧ ( ⌊ ‘ ( 𝐴 / ( 2 ↑ ( 𝑁 + 1 ) ) ) ) ∈ ℤ ) → ( ( ( ( ⌊ ‘ ( 𝐴 / ( 2 ↑ ( 𝑁 + 1 ) ) ) ) − 1 ) < ( ⌊ ‘ ( ( ⌊ ‘ ( 𝐴 / 2 ) ) / ( 2 ↑ 𝑁 ) ) ) ∧ ( ⌊ ‘ ( ( ⌊ ‘ ( 𝐴 / 2 ) ) / ( 2 ↑ 𝑁 ) ) ) ≤ ( ⌊ ‘ ( 𝐴 / ( 2 ↑ ( 𝑁 + 1 ) ) ) ) ) → ( ⌊ ‘ ( ( ⌊ ‘ ( 𝐴 / 2 ) ) / ( 2 ↑ 𝑁 ) ) ) = ( ⌊ ‘ ( 𝐴 / ( 2 ↑ ( 𝑁 + 1 ) ) ) ) ) ) |
| 89 |
88
|
imp |
⊢ ( ( ( ( ⌊ ‘ ( ( ⌊ ‘ ( 𝐴 / 2 ) ) / ( 2 ↑ 𝑁 ) ) ) ∈ ℤ ∧ ( ⌊ ‘ ( 𝐴 / ( 2 ↑ ( 𝑁 + 1 ) ) ) ) ∈ ℤ ) ∧ ( ( ( ⌊ ‘ ( 𝐴 / ( 2 ↑ ( 𝑁 + 1 ) ) ) ) − 1 ) < ( ⌊ ‘ ( ( ⌊ ‘ ( 𝐴 / 2 ) ) / ( 2 ↑ 𝑁 ) ) ) ∧ ( ⌊ ‘ ( ( ⌊ ‘ ( 𝐴 / 2 ) ) / ( 2 ↑ 𝑁 ) ) ) ≤ ( ⌊ ‘ ( 𝐴 / ( 2 ↑ ( 𝑁 + 1 ) ) ) ) ) ) → ( ⌊ ‘ ( ( ⌊ ‘ ( 𝐴 / 2 ) ) / ( 2 ↑ 𝑁 ) ) ) = ( ⌊ ‘ ( 𝐴 / ( 2 ↑ ( 𝑁 + 1 ) ) ) ) ) |
| 90 |
18 29 64 87 89
|
syl22anc |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( ( 𝐴 − 1 ) / 2 ) ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( ⌊ ‘ ( ( ⌊ ‘ ( 𝐴 / 2 ) ) / ( 2 ↑ 𝑁 ) ) ) = ( ⌊ ‘ ( 𝐴 / ( 2 ↑ ( 𝑁 + 1 ) ) ) ) ) |
| 91 |
90
|
eqcomd |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( ( 𝐴 − 1 ) / 2 ) ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( ⌊ ‘ ( 𝐴 / ( 2 ↑ ( 𝑁 + 1 ) ) ) ) = ( ⌊ ‘ ( ( ⌊ ‘ ( 𝐴 / 2 ) ) / ( 2 ↑ 𝑁 ) ) ) ) |