Step |
Hyp |
Ref |
Expression |
1 |
|
nn0cn |
⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℂ ) |
2 |
1
|
3ad2ant2 |
⊢ ( ( ( 𝐴 / 2 ) ∈ ℕ0 ∧ 𝐴 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0 ) → 𝐴 ∈ ℂ ) |
3 |
|
2cnne0 |
⊢ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) |
4 |
3
|
a1i |
⊢ ( ( ( 𝐴 / 2 ) ∈ ℕ0 ∧ 𝐴 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0 ) → ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) |
5 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
6 |
5
|
a1i |
⊢ ( 𝐼 ∈ ℕ0 → 2 ∈ ℕ0 ) |
7 |
|
id |
⊢ ( 𝐼 ∈ ℕ0 → 𝐼 ∈ ℕ0 ) |
8 |
6 7
|
nn0expcld |
⊢ ( 𝐼 ∈ ℕ0 → ( 2 ↑ 𝐼 ) ∈ ℕ0 ) |
9 |
8
|
nn0cnd |
⊢ ( 𝐼 ∈ ℕ0 → ( 2 ↑ 𝐼 ) ∈ ℂ ) |
10 |
|
2cnd |
⊢ ( 𝐼 ∈ ℕ0 → 2 ∈ ℂ ) |
11 |
|
2ne0 |
⊢ 2 ≠ 0 |
12 |
11
|
a1i |
⊢ ( 𝐼 ∈ ℕ0 → 2 ≠ 0 ) |
13 |
|
nn0z |
⊢ ( 𝐼 ∈ ℕ0 → 𝐼 ∈ ℤ ) |
14 |
10 12 13
|
expne0d |
⊢ ( 𝐼 ∈ ℕ0 → ( 2 ↑ 𝐼 ) ≠ 0 ) |
15 |
9 14
|
jca |
⊢ ( 𝐼 ∈ ℕ0 → ( ( 2 ↑ 𝐼 ) ∈ ℂ ∧ ( 2 ↑ 𝐼 ) ≠ 0 ) ) |
16 |
15
|
3ad2ant3 |
⊢ ( ( ( 𝐴 / 2 ) ∈ ℕ0 ∧ 𝐴 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0 ) → ( ( 2 ↑ 𝐼 ) ∈ ℂ ∧ ( 2 ↑ 𝐼 ) ≠ 0 ) ) |
17 |
|
divdiv1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ∧ ( ( 2 ↑ 𝐼 ) ∈ ℂ ∧ ( 2 ↑ 𝐼 ) ≠ 0 ) ) → ( ( 𝐴 / 2 ) / ( 2 ↑ 𝐼 ) ) = ( 𝐴 / ( 2 · ( 2 ↑ 𝐼 ) ) ) ) |
18 |
2 4 16 17
|
syl3anc |
⊢ ( ( ( 𝐴 / 2 ) ∈ ℕ0 ∧ 𝐴 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0 ) → ( ( 𝐴 / 2 ) / ( 2 ↑ 𝐼 ) ) = ( 𝐴 / ( 2 · ( 2 ↑ 𝐼 ) ) ) ) |
19 |
10 9
|
mulcomd |
⊢ ( 𝐼 ∈ ℕ0 → ( 2 · ( 2 ↑ 𝐼 ) ) = ( ( 2 ↑ 𝐼 ) · 2 ) ) |
20 |
19
|
3ad2ant3 |
⊢ ( ( ( 𝐴 / 2 ) ∈ ℕ0 ∧ 𝐴 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0 ) → ( 2 · ( 2 ↑ 𝐼 ) ) = ( ( 2 ↑ 𝐼 ) · 2 ) ) |
21 |
|
2cnd |
⊢ ( ( ( 𝐴 / 2 ) ∈ ℕ0 ∧ 𝐴 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0 ) → 2 ∈ ℂ ) |
22 |
|
simp3 |
⊢ ( ( ( 𝐴 / 2 ) ∈ ℕ0 ∧ 𝐴 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0 ) → 𝐼 ∈ ℕ0 ) |
23 |
21 22
|
expp1d |
⊢ ( ( ( 𝐴 / 2 ) ∈ ℕ0 ∧ 𝐴 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0 ) → ( 2 ↑ ( 𝐼 + 1 ) ) = ( ( 2 ↑ 𝐼 ) · 2 ) ) |
24 |
20 23
|
eqtr4d |
⊢ ( ( ( 𝐴 / 2 ) ∈ ℕ0 ∧ 𝐴 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0 ) → ( 2 · ( 2 ↑ 𝐼 ) ) = ( 2 ↑ ( 𝐼 + 1 ) ) ) |
25 |
24
|
oveq2d |
⊢ ( ( ( 𝐴 / 2 ) ∈ ℕ0 ∧ 𝐴 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0 ) → ( 𝐴 / ( 2 · ( 2 ↑ 𝐼 ) ) ) = ( 𝐴 / ( 2 ↑ ( 𝐼 + 1 ) ) ) ) |
26 |
18 25
|
eqtr2d |
⊢ ( ( ( 𝐴 / 2 ) ∈ ℕ0 ∧ 𝐴 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0 ) → ( 𝐴 / ( 2 ↑ ( 𝐼 + 1 ) ) ) = ( ( 𝐴 / 2 ) / ( 2 ↑ 𝐼 ) ) ) |
27 |
26
|
fveq2d |
⊢ ( ( ( 𝐴 / 2 ) ∈ ℕ0 ∧ 𝐴 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0 ) → ( ⌊ ‘ ( 𝐴 / ( 2 ↑ ( 𝐼 + 1 ) ) ) ) = ( ⌊ ‘ ( ( 𝐴 / 2 ) / ( 2 ↑ 𝐼 ) ) ) ) |
28 |
27
|
oveq1d |
⊢ ( ( ( 𝐴 / 2 ) ∈ ℕ0 ∧ 𝐴 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0 ) → ( ( ⌊ ‘ ( 𝐴 / ( 2 ↑ ( 𝐼 + 1 ) ) ) ) mod 2 ) = ( ( ⌊ ‘ ( ( 𝐴 / 2 ) / ( 2 ↑ 𝐼 ) ) ) mod 2 ) ) |
29 |
|
2nn |
⊢ 2 ∈ ℕ |
30 |
29
|
a1i |
⊢ ( ( ( 𝐴 / 2 ) ∈ ℕ0 ∧ 𝐴 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0 ) → 2 ∈ ℕ ) |
31 |
|
peano2nn0 |
⊢ ( 𝐼 ∈ ℕ0 → ( 𝐼 + 1 ) ∈ ℕ0 ) |
32 |
31
|
3ad2ant3 |
⊢ ( ( ( 𝐴 / 2 ) ∈ ℕ0 ∧ 𝐴 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0 ) → ( 𝐼 + 1 ) ∈ ℕ0 ) |
33 |
|
nn0rp0 |
⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ( 0 [,) +∞ ) ) |
34 |
33
|
3ad2ant2 |
⊢ ( ( ( 𝐴 / 2 ) ∈ ℕ0 ∧ 𝐴 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0 ) → 𝐴 ∈ ( 0 [,) +∞ ) ) |
35 |
|
nn0digval |
⊢ ( ( 2 ∈ ℕ ∧ ( 𝐼 + 1 ) ∈ ℕ0 ∧ 𝐴 ∈ ( 0 [,) +∞ ) ) → ( ( 𝐼 + 1 ) ( digit ‘ 2 ) 𝐴 ) = ( ( ⌊ ‘ ( 𝐴 / ( 2 ↑ ( 𝐼 + 1 ) ) ) ) mod 2 ) ) |
36 |
30 32 34 35
|
syl3anc |
⊢ ( ( ( 𝐴 / 2 ) ∈ ℕ0 ∧ 𝐴 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0 ) → ( ( 𝐼 + 1 ) ( digit ‘ 2 ) 𝐴 ) = ( ( ⌊ ‘ ( 𝐴 / ( 2 ↑ ( 𝐼 + 1 ) ) ) ) mod 2 ) ) |
37 |
|
nn0rp0 |
⊢ ( ( 𝐴 / 2 ) ∈ ℕ0 → ( 𝐴 / 2 ) ∈ ( 0 [,) +∞ ) ) |
38 |
37
|
3ad2ant1 |
⊢ ( ( ( 𝐴 / 2 ) ∈ ℕ0 ∧ 𝐴 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0 ) → ( 𝐴 / 2 ) ∈ ( 0 [,) +∞ ) ) |
39 |
|
nn0digval |
⊢ ( ( 2 ∈ ℕ ∧ 𝐼 ∈ ℕ0 ∧ ( 𝐴 / 2 ) ∈ ( 0 [,) +∞ ) ) → ( 𝐼 ( digit ‘ 2 ) ( 𝐴 / 2 ) ) = ( ( ⌊ ‘ ( ( 𝐴 / 2 ) / ( 2 ↑ 𝐼 ) ) ) mod 2 ) ) |
40 |
30 22 38 39
|
syl3anc |
⊢ ( ( ( 𝐴 / 2 ) ∈ ℕ0 ∧ 𝐴 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0 ) → ( 𝐼 ( digit ‘ 2 ) ( 𝐴 / 2 ) ) = ( ( ⌊ ‘ ( ( 𝐴 / 2 ) / ( 2 ↑ 𝐼 ) ) ) mod 2 ) ) |
41 |
28 36 40
|
3eqtr4d |
⊢ ( ( ( 𝐴 / 2 ) ∈ ℕ0 ∧ 𝐴 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0 ) → ( ( 𝐼 + 1 ) ( digit ‘ 2 ) 𝐴 ) = ( 𝐼 ( digit ‘ 2 ) ( 𝐴 / 2 ) ) ) |