| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nn0cn | ⊢ ( 𝐴  ∈  ℕ0  →  𝐴  ∈  ℂ ) | 
						
							| 2 | 1 | 3ad2ant2 | ⊢ ( ( ( 𝐴  /  2 )  ∈  ℕ0  ∧  𝐴  ∈  ℕ0  ∧  𝐼  ∈  ℕ0 )  →  𝐴  ∈  ℂ ) | 
						
							| 3 |  | 2cnne0 | ⊢ ( 2  ∈  ℂ  ∧  2  ≠  0 ) | 
						
							| 4 | 3 | a1i | ⊢ ( ( ( 𝐴  /  2 )  ∈  ℕ0  ∧  𝐴  ∈  ℕ0  ∧  𝐼  ∈  ℕ0 )  →  ( 2  ∈  ℂ  ∧  2  ≠  0 ) ) | 
						
							| 5 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 6 | 5 | a1i | ⊢ ( 𝐼  ∈  ℕ0  →  2  ∈  ℕ0 ) | 
						
							| 7 |  | id | ⊢ ( 𝐼  ∈  ℕ0  →  𝐼  ∈  ℕ0 ) | 
						
							| 8 | 6 7 | nn0expcld | ⊢ ( 𝐼  ∈  ℕ0  →  ( 2 ↑ 𝐼 )  ∈  ℕ0 ) | 
						
							| 9 | 8 | nn0cnd | ⊢ ( 𝐼  ∈  ℕ0  →  ( 2 ↑ 𝐼 )  ∈  ℂ ) | 
						
							| 10 |  | 2cnd | ⊢ ( 𝐼  ∈  ℕ0  →  2  ∈  ℂ ) | 
						
							| 11 |  | 2ne0 | ⊢ 2  ≠  0 | 
						
							| 12 | 11 | a1i | ⊢ ( 𝐼  ∈  ℕ0  →  2  ≠  0 ) | 
						
							| 13 |  | nn0z | ⊢ ( 𝐼  ∈  ℕ0  →  𝐼  ∈  ℤ ) | 
						
							| 14 | 10 12 13 | expne0d | ⊢ ( 𝐼  ∈  ℕ0  →  ( 2 ↑ 𝐼 )  ≠  0 ) | 
						
							| 15 | 9 14 | jca | ⊢ ( 𝐼  ∈  ℕ0  →  ( ( 2 ↑ 𝐼 )  ∈  ℂ  ∧  ( 2 ↑ 𝐼 )  ≠  0 ) ) | 
						
							| 16 | 15 | 3ad2ant3 | ⊢ ( ( ( 𝐴  /  2 )  ∈  ℕ0  ∧  𝐴  ∈  ℕ0  ∧  𝐼  ∈  ℕ0 )  →  ( ( 2 ↑ 𝐼 )  ∈  ℂ  ∧  ( 2 ↑ 𝐼 )  ≠  0 ) ) | 
						
							| 17 |  | divdiv1 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( 2  ∈  ℂ  ∧  2  ≠  0 )  ∧  ( ( 2 ↑ 𝐼 )  ∈  ℂ  ∧  ( 2 ↑ 𝐼 )  ≠  0 ) )  →  ( ( 𝐴  /  2 )  /  ( 2 ↑ 𝐼 ) )  =  ( 𝐴  /  ( 2  ·  ( 2 ↑ 𝐼 ) ) ) ) | 
						
							| 18 | 2 4 16 17 | syl3anc | ⊢ ( ( ( 𝐴  /  2 )  ∈  ℕ0  ∧  𝐴  ∈  ℕ0  ∧  𝐼  ∈  ℕ0 )  →  ( ( 𝐴  /  2 )  /  ( 2 ↑ 𝐼 ) )  =  ( 𝐴  /  ( 2  ·  ( 2 ↑ 𝐼 ) ) ) ) | 
						
							| 19 | 10 9 | mulcomd | ⊢ ( 𝐼  ∈  ℕ0  →  ( 2  ·  ( 2 ↑ 𝐼 ) )  =  ( ( 2 ↑ 𝐼 )  ·  2 ) ) | 
						
							| 20 | 19 | 3ad2ant3 | ⊢ ( ( ( 𝐴  /  2 )  ∈  ℕ0  ∧  𝐴  ∈  ℕ0  ∧  𝐼  ∈  ℕ0 )  →  ( 2  ·  ( 2 ↑ 𝐼 ) )  =  ( ( 2 ↑ 𝐼 )  ·  2 ) ) | 
						
							| 21 |  | 2cnd | ⊢ ( ( ( 𝐴  /  2 )  ∈  ℕ0  ∧  𝐴  ∈  ℕ0  ∧  𝐼  ∈  ℕ0 )  →  2  ∈  ℂ ) | 
						
							| 22 |  | simp3 | ⊢ ( ( ( 𝐴  /  2 )  ∈  ℕ0  ∧  𝐴  ∈  ℕ0  ∧  𝐼  ∈  ℕ0 )  →  𝐼  ∈  ℕ0 ) | 
						
							| 23 | 21 22 | expp1d | ⊢ ( ( ( 𝐴  /  2 )  ∈  ℕ0  ∧  𝐴  ∈  ℕ0  ∧  𝐼  ∈  ℕ0 )  →  ( 2 ↑ ( 𝐼  +  1 ) )  =  ( ( 2 ↑ 𝐼 )  ·  2 ) ) | 
						
							| 24 | 20 23 | eqtr4d | ⊢ ( ( ( 𝐴  /  2 )  ∈  ℕ0  ∧  𝐴  ∈  ℕ0  ∧  𝐼  ∈  ℕ0 )  →  ( 2  ·  ( 2 ↑ 𝐼 ) )  =  ( 2 ↑ ( 𝐼  +  1 ) ) ) | 
						
							| 25 | 24 | oveq2d | ⊢ ( ( ( 𝐴  /  2 )  ∈  ℕ0  ∧  𝐴  ∈  ℕ0  ∧  𝐼  ∈  ℕ0 )  →  ( 𝐴  /  ( 2  ·  ( 2 ↑ 𝐼 ) ) )  =  ( 𝐴  /  ( 2 ↑ ( 𝐼  +  1 ) ) ) ) | 
						
							| 26 | 18 25 | eqtr2d | ⊢ ( ( ( 𝐴  /  2 )  ∈  ℕ0  ∧  𝐴  ∈  ℕ0  ∧  𝐼  ∈  ℕ0 )  →  ( 𝐴  /  ( 2 ↑ ( 𝐼  +  1 ) ) )  =  ( ( 𝐴  /  2 )  /  ( 2 ↑ 𝐼 ) ) ) | 
						
							| 27 | 26 | fveq2d | ⊢ ( ( ( 𝐴  /  2 )  ∈  ℕ0  ∧  𝐴  ∈  ℕ0  ∧  𝐼  ∈  ℕ0 )  →  ( ⌊ ‘ ( 𝐴  /  ( 2 ↑ ( 𝐼  +  1 ) ) ) )  =  ( ⌊ ‘ ( ( 𝐴  /  2 )  /  ( 2 ↑ 𝐼 ) ) ) ) | 
						
							| 28 | 27 | oveq1d | ⊢ ( ( ( 𝐴  /  2 )  ∈  ℕ0  ∧  𝐴  ∈  ℕ0  ∧  𝐼  ∈  ℕ0 )  →  ( ( ⌊ ‘ ( 𝐴  /  ( 2 ↑ ( 𝐼  +  1 ) ) ) )  mod  2 )  =  ( ( ⌊ ‘ ( ( 𝐴  /  2 )  /  ( 2 ↑ 𝐼 ) ) )  mod  2 ) ) | 
						
							| 29 |  | 2nn | ⊢ 2  ∈  ℕ | 
						
							| 30 | 29 | a1i | ⊢ ( ( ( 𝐴  /  2 )  ∈  ℕ0  ∧  𝐴  ∈  ℕ0  ∧  𝐼  ∈  ℕ0 )  →  2  ∈  ℕ ) | 
						
							| 31 |  | peano2nn0 | ⊢ ( 𝐼  ∈  ℕ0  →  ( 𝐼  +  1 )  ∈  ℕ0 ) | 
						
							| 32 | 31 | 3ad2ant3 | ⊢ ( ( ( 𝐴  /  2 )  ∈  ℕ0  ∧  𝐴  ∈  ℕ0  ∧  𝐼  ∈  ℕ0 )  →  ( 𝐼  +  1 )  ∈  ℕ0 ) | 
						
							| 33 |  | nn0rp0 | ⊢ ( 𝐴  ∈  ℕ0  →  𝐴  ∈  ( 0 [,) +∞ ) ) | 
						
							| 34 | 33 | 3ad2ant2 | ⊢ ( ( ( 𝐴  /  2 )  ∈  ℕ0  ∧  𝐴  ∈  ℕ0  ∧  𝐼  ∈  ℕ0 )  →  𝐴  ∈  ( 0 [,) +∞ ) ) | 
						
							| 35 |  | nn0digval | ⊢ ( ( 2  ∈  ℕ  ∧  ( 𝐼  +  1 )  ∈  ℕ0  ∧  𝐴  ∈  ( 0 [,) +∞ ) )  →  ( ( 𝐼  +  1 ) ( digit ‘ 2 ) 𝐴 )  =  ( ( ⌊ ‘ ( 𝐴  /  ( 2 ↑ ( 𝐼  +  1 ) ) ) )  mod  2 ) ) | 
						
							| 36 | 30 32 34 35 | syl3anc | ⊢ ( ( ( 𝐴  /  2 )  ∈  ℕ0  ∧  𝐴  ∈  ℕ0  ∧  𝐼  ∈  ℕ0 )  →  ( ( 𝐼  +  1 ) ( digit ‘ 2 ) 𝐴 )  =  ( ( ⌊ ‘ ( 𝐴  /  ( 2 ↑ ( 𝐼  +  1 ) ) ) )  mod  2 ) ) | 
						
							| 37 |  | nn0rp0 | ⊢ ( ( 𝐴  /  2 )  ∈  ℕ0  →  ( 𝐴  /  2 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 38 | 37 | 3ad2ant1 | ⊢ ( ( ( 𝐴  /  2 )  ∈  ℕ0  ∧  𝐴  ∈  ℕ0  ∧  𝐼  ∈  ℕ0 )  →  ( 𝐴  /  2 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 39 |  | nn0digval | ⊢ ( ( 2  ∈  ℕ  ∧  𝐼  ∈  ℕ0  ∧  ( 𝐴  /  2 )  ∈  ( 0 [,) +∞ ) )  →  ( 𝐼 ( digit ‘ 2 ) ( 𝐴  /  2 ) )  =  ( ( ⌊ ‘ ( ( 𝐴  /  2 )  /  ( 2 ↑ 𝐼 ) ) )  mod  2 ) ) | 
						
							| 40 | 30 22 38 39 | syl3anc | ⊢ ( ( ( 𝐴  /  2 )  ∈  ℕ0  ∧  𝐴  ∈  ℕ0  ∧  𝐼  ∈  ℕ0 )  →  ( 𝐼 ( digit ‘ 2 ) ( 𝐴  /  2 ) )  =  ( ( ⌊ ‘ ( ( 𝐴  /  2 )  /  ( 2 ↑ 𝐼 ) ) )  mod  2 ) ) | 
						
							| 41 | 28 36 40 | 3eqtr4d | ⊢ ( ( ( 𝐴  /  2 )  ∈  ℕ0  ∧  𝐴  ∈  ℕ0  ∧  𝐼  ∈  ℕ0 )  →  ( ( 𝐼  +  1 ) ( digit ‘ 2 ) 𝐴 )  =  ( 𝐼 ( digit ‘ 2 ) ( 𝐴  /  2 ) ) ) |