Step |
Hyp |
Ref |
Expression |
1 |
|
nn0cn |
|
2 |
1
|
3ad2ant2 |
|
3 |
|
2cnne0 |
|
4 |
3
|
a1i |
|
5 |
|
2nn0 |
|
6 |
5
|
a1i |
|
7 |
|
id |
|
8 |
6 7
|
nn0expcld |
|
9 |
8
|
nn0cnd |
|
10 |
|
2cnd |
|
11 |
|
2ne0 |
|
12 |
11
|
a1i |
|
13 |
|
nn0z |
|
14 |
10 12 13
|
expne0d |
|
15 |
9 14
|
jca |
|
16 |
15
|
3ad2ant3 |
|
17 |
|
divdiv1 |
|
18 |
2 4 16 17
|
syl3anc |
|
19 |
10 9
|
mulcomd |
|
20 |
19
|
3ad2ant3 |
|
21 |
|
2cnd |
|
22 |
|
simp3 |
|
23 |
21 22
|
expp1d |
|
24 |
20 23
|
eqtr4d |
|
25 |
24
|
oveq2d |
|
26 |
18 25
|
eqtr2d |
|
27 |
26
|
fveq2d |
|
28 |
27
|
oveq1d |
|
29 |
|
2nn |
|
30 |
29
|
a1i |
|
31 |
|
peano2nn0 |
|
32 |
31
|
3ad2ant3 |
|
33 |
|
nn0rp0 |
|
34 |
33
|
3ad2ant2 |
|
35 |
|
nn0digval |
|
36 |
30 32 34 35
|
syl3anc |
|
37 |
|
nn0rp0 |
|
38 |
37
|
3ad2ant1 |
|
39 |
|
nn0digval |
|
40 |
30 22 38 39
|
syl3anc |
|
41 |
28 36 40
|
3eqtr4d |
|