| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nn0cn |
|
| 2 |
1
|
3ad2ant2 |
|
| 3 |
|
2cnne0 |
|
| 4 |
3
|
a1i |
|
| 5 |
|
2nn0 |
|
| 6 |
5
|
a1i |
|
| 7 |
|
id |
|
| 8 |
6 7
|
nn0expcld |
|
| 9 |
8
|
nn0cnd |
|
| 10 |
|
2cnd |
|
| 11 |
|
2ne0 |
|
| 12 |
11
|
a1i |
|
| 13 |
|
nn0z |
|
| 14 |
10 12 13
|
expne0d |
|
| 15 |
9 14
|
jca |
|
| 16 |
15
|
3ad2ant3 |
|
| 17 |
|
divdiv1 |
|
| 18 |
2 4 16 17
|
syl3anc |
|
| 19 |
10 9
|
mulcomd |
|
| 20 |
19
|
3ad2ant3 |
|
| 21 |
|
2cnd |
|
| 22 |
|
simp3 |
|
| 23 |
21 22
|
expp1d |
|
| 24 |
20 23
|
eqtr4d |
|
| 25 |
24
|
oveq2d |
|
| 26 |
18 25
|
eqtr2d |
|
| 27 |
26
|
fveq2d |
|
| 28 |
27
|
oveq1d |
|
| 29 |
|
2nn |
|
| 30 |
29
|
a1i |
|
| 31 |
|
peano2nn0 |
|
| 32 |
31
|
3ad2ant3 |
|
| 33 |
|
nn0rp0 |
|
| 34 |
33
|
3ad2ant2 |
|
| 35 |
|
nn0digval |
|
| 36 |
30 32 34 35
|
syl3anc |
|
| 37 |
|
nn0rp0 |
|
| 38 |
37
|
3ad2ant1 |
|
| 39 |
|
nn0digval |
|
| 40 |
30 22 38 39
|
syl3anc |
|
| 41 |
28 36 40
|
3eqtr4d |
|