Metamath Proof Explorer


Theorem dignn0ehalf

Description: The digits of the half of an even nonnegative integer are the digits of the integer shifted by 1. (Contributed by AV, 3-Jun-2010)

Ref Expression
Assertion dignn0ehalf A 2 0 A 0 I 0 I + 1 digit 2 A = I digit 2 A 2

Proof

Step Hyp Ref Expression
1 nn0cn A 0 A
2 1 3ad2ant2 A 2 0 A 0 I 0 A
3 2cnne0 2 2 0
4 3 a1i A 2 0 A 0 I 0 2 2 0
5 2nn0 2 0
6 5 a1i I 0 2 0
7 id I 0 I 0
8 6 7 nn0expcld I 0 2 I 0
9 8 nn0cnd I 0 2 I
10 2cnd I 0 2
11 2ne0 2 0
12 11 a1i I 0 2 0
13 nn0z I 0 I
14 10 12 13 expne0d I 0 2 I 0
15 9 14 jca I 0 2 I 2 I 0
16 15 3ad2ant3 A 2 0 A 0 I 0 2 I 2 I 0
17 divdiv1 A 2 2 0 2 I 2 I 0 A 2 2 I = A 2 2 I
18 2 4 16 17 syl3anc A 2 0 A 0 I 0 A 2 2 I = A 2 2 I
19 10 9 mulcomd I 0 2 2 I = 2 I 2
20 19 3ad2ant3 A 2 0 A 0 I 0 2 2 I = 2 I 2
21 2cnd A 2 0 A 0 I 0 2
22 simp3 A 2 0 A 0 I 0 I 0
23 21 22 expp1d A 2 0 A 0 I 0 2 I + 1 = 2 I 2
24 20 23 eqtr4d A 2 0 A 0 I 0 2 2 I = 2 I + 1
25 24 oveq2d A 2 0 A 0 I 0 A 2 2 I = A 2 I + 1
26 18 25 eqtr2d A 2 0 A 0 I 0 A 2 I + 1 = A 2 2 I
27 26 fveq2d A 2 0 A 0 I 0 A 2 I + 1 = A 2 2 I
28 27 oveq1d A 2 0 A 0 I 0 A 2 I + 1 mod 2 = A 2 2 I mod 2
29 2nn 2
30 29 a1i A 2 0 A 0 I 0 2
31 peano2nn0 I 0 I + 1 0
32 31 3ad2ant3 A 2 0 A 0 I 0 I + 1 0
33 nn0rp0 A 0 A 0 +∞
34 33 3ad2ant2 A 2 0 A 0 I 0 A 0 +∞
35 nn0digval 2 I + 1 0 A 0 +∞ I + 1 digit 2 A = A 2 I + 1 mod 2
36 30 32 34 35 syl3anc A 2 0 A 0 I 0 I + 1 digit 2 A = A 2 I + 1 mod 2
37 nn0rp0 A 2 0 A 2 0 +∞
38 37 3ad2ant1 A 2 0 A 0 I 0 A 2 0 +∞
39 nn0digval 2 I 0 A 2 0 +∞ I digit 2 A 2 = A 2 2 I mod 2
40 30 22 38 39 syl3anc A 2 0 A 0 I 0 I digit 2 A 2 = A 2 2 I mod 2
41 28 36 40 3eqtr4d A 2 0 A 0 I 0 I + 1 digit 2 A = I digit 2 A 2