| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nn0cn |  | 
						
							| 2 | 1 | 3ad2ant2 |  | 
						
							| 3 |  | 2cnne0 |  | 
						
							| 4 | 3 | a1i |  | 
						
							| 5 |  | 2nn0 |  | 
						
							| 6 | 5 | a1i |  | 
						
							| 7 |  | id |  | 
						
							| 8 | 6 7 | nn0expcld |  | 
						
							| 9 | 8 | nn0cnd |  | 
						
							| 10 |  | 2cnd |  | 
						
							| 11 |  | 2ne0 |  | 
						
							| 12 | 11 | a1i |  | 
						
							| 13 |  | nn0z |  | 
						
							| 14 | 10 12 13 | expne0d |  | 
						
							| 15 | 9 14 | jca |  | 
						
							| 16 | 15 | 3ad2ant3 |  | 
						
							| 17 |  | divdiv1 |  | 
						
							| 18 | 2 4 16 17 | syl3anc |  | 
						
							| 19 | 10 9 | mulcomd |  | 
						
							| 20 | 19 | 3ad2ant3 |  | 
						
							| 21 |  | 2cnd |  | 
						
							| 22 |  | simp3 |  | 
						
							| 23 | 21 22 | expp1d |  | 
						
							| 24 | 20 23 | eqtr4d |  | 
						
							| 25 | 24 | oveq2d |  | 
						
							| 26 | 18 25 | eqtr2d |  | 
						
							| 27 | 26 | fveq2d |  | 
						
							| 28 | 27 | oveq1d |  | 
						
							| 29 |  | 2nn |  | 
						
							| 30 | 29 | a1i |  | 
						
							| 31 |  | peano2nn0 |  | 
						
							| 32 | 31 | 3ad2ant3 |  | 
						
							| 33 |  | nn0rp0 |  | 
						
							| 34 | 33 | 3ad2ant2 |  | 
						
							| 35 |  | nn0digval |  | 
						
							| 36 | 30 32 34 35 | syl3anc |  | 
						
							| 37 |  | nn0rp0 |  | 
						
							| 38 | 37 | 3ad2ant1 |  | 
						
							| 39 |  | nn0digval |  | 
						
							| 40 | 30 22 38 39 | syl3anc |  | 
						
							| 41 | 28 36 40 | 3eqtr4d |  |