Step |
Hyp |
Ref |
Expression |
1 |
|
zre |
|
2 |
1
|
rehalfcld |
|
3 |
2
|
flcld |
|
4 |
3
|
zred |
|
5 |
4
|
3ad2ant1 |
|
6 |
|
2re |
|
7 |
6
|
a1i |
|
8 |
|
id |
|
9 |
7 8
|
reexpcld |
|
10 |
9
|
3ad2ant3 |
|
11 |
|
2cnd |
|
12 |
|
2ne0 |
|
13 |
12
|
a1i |
|
14 |
|
nn0z |
|
15 |
14
|
3ad2ant3 |
|
16 |
11 13 15
|
expne0d |
|
17 |
5 10 16
|
redivcld |
|
18 |
17
|
flcld |
|
19 |
1
|
3ad2ant1 |
|
20 |
6
|
a1i |
|
21 |
|
simp3 |
|
22 |
|
1nn0 |
|
23 |
22
|
a1i |
|
24 |
21 23
|
nn0addcld |
|
25 |
20 24
|
reexpcld |
|
26 |
15
|
peano2zd |
|
27 |
11 13 26
|
expne0d |
|
28 |
19 25 27
|
redivcld |
|
29 |
28
|
flcld |
|
30 |
|
nn0p1nn |
|
31 |
|
dignn0flhalflem1 |
|
32 |
30 31
|
syl3an3 |
|
33 |
|
1zzd |
|
34 |
|
flsubz |
|
35 |
28 33 34
|
syl2anc |
|
36 |
35
|
eqcomd |
|
37 |
|
nnz |
|
38 |
|
zob |
|
39 |
37 38
|
syl5ibr |
|
40 |
39
|
imp |
|
41 |
|
zofldiv2 |
|
42 |
40 41
|
syldan |
|
43 |
42
|
3adant3 |
|
44 |
43
|
fvoveq1d |
|
45 |
|
zcn |
|
46 |
|
1cnd |
|
47 |
45 46
|
subcld |
|
48 |
|
2rp |
|
49 |
48
|
a1i |
|
50 |
49
|
rpcnne0d |
|
51 |
48
|
a1i |
|
52 |
51 14
|
rpexpcld |
|
53 |
52
|
rpcnne0d |
|
54 |
|
divdiv1 |
|
55 |
47 50 53 54
|
syl3an |
|
56 |
10
|
recnd |
|
57 |
11 56
|
mulcomd |
|
58 |
11 21
|
expp1d |
|
59 |
57 58
|
eqtr4d |
|
60 |
59
|
oveq2d |
|
61 |
55 60
|
eqtrd |
|
62 |
61
|
fveq2d |
|
63 |
44 62
|
eqtrd |
|
64 |
32 36 63
|
3brtr4d |
|
65 |
19
|
rehalfcld |
|
66 |
65 10 16
|
redivcld |
|
67 |
|
reflcl |
|
68 |
65 67
|
syl |
|
69 |
48
|
a1i |
|
70 |
69 15
|
rpexpcld |
|
71 |
|
flle |
|
72 |
65 71
|
syl |
|
73 |
68 65 70 72
|
lediv1dd |
|
74 |
|
flwordi |
|
75 |
17 66 73 74
|
syl3anc |
|
76 |
|
divdiv1 |
|
77 |
45 50 53 76
|
syl3an |
|
78 |
52
|
rpcnd |
|
79 |
78
|
3ad2ant3 |
|
80 |
11 79
|
mulcomd |
|
81 |
11 13 15
|
expp1zd |
|
82 |
80 81
|
eqtr4d |
|
83 |
82
|
oveq2d |
|
84 |
77 83
|
eqtrd |
|
85 |
84
|
eqcomd |
|
86 |
85
|
fveq2d |
|
87 |
75 86
|
breqtrrd |
|
88 |
|
zgtp1leeq |
|
89 |
88
|
imp |
|
90 |
18 29 64 87 89
|
syl22anc |
|
91 |
90
|
eqcomd |
|