| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zre |
|
| 2 |
1
|
3ad2ant1 |
|
| 3 |
|
2rp |
|
| 4 |
3
|
a1i |
|
| 5 |
|
nnz |
|
| 6 |
4 5
|
rpexpcld |
|
| 7 |
6
|
rpred |
|
| 8 |
7
|
3ad2ant3 |
|
| 9 |
2 8
|
resubcld |
|
| 10 |
6
|
3ad2ant3 |
|
| 11 |
9 10
|
modcld |
|
| 12 |
9 11
|
resubcld |
|
| 13 |
|
peano2zm |
|
| 14 |
13
|
zred |
|
| 15 |
14
|
3ad2ant1 |
|
| 16 |
15 10
|
modcld |
|
| 17 |
15 16
|
resubcld |
|
| 18 |
|
1red |
|
| 19 |
18 16
|
readdcld |
|
| 20 |
8 11
|
readdcld |
|
| 21 |
|
2nn |
|
| 22 |
21
|
a1i |
|
| 23 |
|
nnnn0 |
|
| 24 |
22 23
|
nnexpcld |
|
| 25 |
24
|
anim2i |
|
| 26 |
25
|
3adant2 |
|
| 27 |
|
m1modmmod |
|
| 28 |
26 27
|
syl |
|
| 29 |
|
nnz |
|
| 30 |
29
|
a1i |
|
| 31 |
|
zcn |
|
| 32 |
|
xp1d2m1eqxm1d2 |
|
| 33 |
32
|
eqcomd |
|
| 34 |
31 33
|
syl |
|
| 35 |
34
|
adantr |
|
| 36 |
35
|
eleq1d |
|
| 37 |
|
peano2z |
|
| 38 |
31
|
adantr |
|
| 39 |
|
1cnd |
|
| 40 |
38 39
|
addcld |
|
| 41 |
40
|
halfcld |
|
| 42 |
41 39
|
npcand |
|
| 43 |
42
|
eleq1d |
|
| 44 |
37 43
|
imbitrid |
|
| 45 |
36 44
|
sylbid |
|
| 46 |
|
mod0 |
|
| 47 |
1 6 46
|
syl2an |
|
| 48 |
22
|
nnzd |
|
| 49 |
|
nnm1nn0 |
|
| 50 |
|
zexpcl |
|
| 51 |
48 49 50
|
syl2anc |
|
| 52 |
51
|
adantl |
|
| 53 |
52
|
adantr |
|
| 54 |
|
simpr |
|
| 55 |
53 54
|
zmulcld |
|
| 56 |
55
|
ex |
|
| 57 |
5
|
adantl |
|
| 58 |
57
|
zcnd |
|
| 59 |
39
|
negcld |
|
| 60 |
58 39
|
negsubd |
|
| 61 |
60
|
eqcomd |
|
| 62 |
58 59 61
|
mvrladdd |
|
| 63 |
62
|
oveq2d |
|
| 64 |
|
2cnd |
|
| 65 |
|
2ne0 |
|
| 66 |
65
|
a1i |
|
| 67 |
|
1zzd |
|
| 68 |
5 67
|
zsubcld |
|
| 69 |
68 5
|
jca |
|
| 70 |
69
|
adantl |
|
| 71 |
|
expsub |
|
| 72 |
64 66 70 71
|
syl21anc |
|
| 73 |
|
expn1 |
|
| 74 |
64 73
|
syl |
|
| 75 |
63 72 74
|
3eqtr3d |
|
| 76 |
75
|
oveq2d |
|
| 77 |
|
2cnd |
|
| 78 |
77 49
|
expcld |
|
| 79 |
78
|
adantl |
|
| 80 |
3
|
a1i |
|
| 81 |
80 57
|
rpexpcld |
|
| 82 |
81
|
rpcnne0d |
|
| 83 |
|
div12 |
|
| 84 |
79 38 82 83
|
syl3anc |
|
| 85 |
38 64 66
|
divrecd |
|
| 86 |
76 84 85
|
3eqtr4d |
|
| 87 |
86
|
eleq1d |
|
| 88 |
56 87
|
sylibd |
|
| 89 |
47 88
|
sylbid |
|
| 90 |
|
zeo2 |
|
| 91 |
90
|
adantr |
|
| 92 |
89 91
|
sylibd |
|
| 93 |
92
|
necon2ad |
|
| 94 |
30 45 93
|
3syld |
|
| 95 |
94
|
ex |
|
| 96 |
95
|
com23 |
|
| 97 |
96
|
3imp |
|
| 98 |
97
|
neneqd |
|
| 99 |
98
|
iffalsed |
|
| 100 |
28 99
|
eqtrd |
|
| 101 |
|
neg1lt0 |
|
| 102 |
|
2re |
|
| 103 |
|
1lt2 |
|
| 104 |
|
expgt1 |
|
| 105 |
102 103 104
|
mp3an13 |
|
| 106 |
|
1red |
|
| 107 |
106 7
|
posdifd |
|
| 108 |
105 107
|
mpbid |
|
| 109 |
106
|
renegcld |
|
| 110 |
|
0red |
|
| 111 |
7 106
|
resubcld |
|
| 112 |
|
lttr |
|
| 113 |
109 110 111 112
|
syl3anc |
|
| 114 |
108 113
|
mpan2d |
|
| 115 |
101 114
|
mpi |
|
| 116 |
115
|
3ad2ant3 |
|
| 117 |
100 116
|
eqbrtrd |
|
| 118 |
2 10
|
modcld |
|
| 119 |
|
ltsubadd2b |
|
| 120 |
18 8 118 16 119
|
syl22anc |
|
| 121 |
117 120
|
mpbid |
|
| 122 |
|
modid0 |
|
| 123 |
10 122
|
syl |
|
| 124 |
123
|
oveq2d |
|
| 125 |
118
|
recnd |
|
| 126 |
125
|
subid1d |
|
| 127 |
124 126
|
eqtrd |
|
| 128 |
127
|
oveq1d |
|
| 129 |
|
modsubmodmod |
|
| 130 |
2 8 10 129
|
syl3anc |
|
| 131 |
|
modabs2 |
|
| 132 |
2 10 131
|
syl2anc |
|
| 133 |
128 130 132
|
3eqtr3d |
|
| 134 |
133
|
oveq2d |
|
| 135 |
121 134
|
breqtrrd |
|
| 136 |
19 20 2 135
|
ltsub2dd |
|
| 137 |
31
|
3ad2ant1 |
|
| 138 |
8
|
recnd |
|
| 139 |
11
|
recnd |
|
| 140 |
137 138 139
|
subsub4d |
|
| 141 |
|
1cnd |
|
| 142 |
16
|
recnd |
|
| 143 |
137 141 142
|
subsub4d |
|
| 144 |
136 140 143
|
3brtr4d |
|
| 145 |
12 17 10 144
|
ltdiv1dd |
|
| 146 |
7
|
recnd |
|
| 147 |
146
|
3ad2ant3 |
|
| 148 |
65
|
a1i |
|
| 149 |
77 148 5
|
expne0d |
|
| 150 |
149
|
3ad2ant3 |
|
| 151 |
|
divsub1dir |
|
| 152 |
151
|
fveq2d |
|
| 153 |
137 147 150 152
|
syl3anc |
|
| 154 |
|
fldivmod |
|
| 155 |
9 10 154
|
syl2anc |
|
| 156 |
153 155
|
eqtrd |
|
| 157 |
|
fldivmod |
|
| 158 |
15 10 157
|
syl2anc |
|
| 159 |
145 156 158
|
3brtr4d |
|