Step |
Hyp |
Ref |
Expression |
1 |
|
dfdisjALTV5 |
|- ( Disj R <-> ( A. x e. dom R A. y e. dom R ( x = y \/ ( [ x ] R i^i [ y ] R ) = (/) ) /\ Rel R ) ) |
2 |
1
|
simplbi |
|- ( Disj R -> A. x e. dom R A. y e. dom R ( x = y \/ ( [ x ] R i^i [ y ] R ) = (/) ) ) |
3 |
|
rsp2 |
|- ( A. x e. dom R A. y e. dom R ( x = y \/ ( [ x ] R i^i [ y ] R ) = (/) ) -> ( ( x e. dom R /\ y e. dom R ) -> ( x = y \/ ( [ x ] R i^i [ y ] R ) = (/) ) ) ) |
4 |
2 3
|
syl |
|- ( Disj R -> ( ( x e. dom R /\ y e. dom R ) -> ( x = y \/ ( [ x ] R i^i [ y ] R ) = (/) ) ) ) |
5 |
|
eceq1 |
|- ( x = y -> [ x ] R = [ y ] R ) |
6 |
5
|
a1d |
|- ( x = y -> ( ( A e. [ x ] R /\ A e. [ y ] R ) -> [ x ] R = [ y ] R ) ) |
7 |
|
elin |
|- ( A e. ( [ x ] R i^i [ y ] R ) <-> ( A e. [ x ] R /\ A e. [ y ] R ) ) |
8 |
|
nel02 |
|- ( ( [ x ] R i^i [ y ] R ) = (/) -> -. A e. ( [ x ] R i^i [ y ] R ) ) |
9 |
8
|
pm2.21d |
|- ( ( [ x ] R i^i [ y ] R ) = (/) -> ( A e. ( [ x ] R i^i [ y ] R ) -> [ x ] R = [ y ] R ) ) |
10 |
7 9
|
biimtrrid |
|- ( ( [ x ] R i^i [ y ] R ) = (/) -> ( ( A e. [ x ] R /\ A e. [ y ] R ) -> [ x ] R = [ y ] R ) ) |
11 |
6 10
|
jaoi |
|- ( ( x = y \/ ( [ x ] R i^i [ y ] R ) = (/) ) -> ( ( A e. [ x ] R /\ A e. [ y ] R ) -> [ x ] R = [ y ] R ) ) |
12 |
4 11
|
syl6 |
|- ( Disj R -> ( ( x e. dom R /\ y e. dom R ) -> ( ( A e. [ x ] R /\ A e. [ y ] R ) -> [ x ] R = [ y ] R ) ) ) |