Metamath Proof Explorer


Theorem disjlem14

Description: Lemma for disjdmqseq , partim2 and petlem via disjlem17 , (general version of the former prtlem14 ). (Contributed by Peter Mazsa, 10-Sep-2021)

Ref Expression
Assertion disjlem14 DisjRxdomRydomRAxRAyRxR=yR

Proof

Step Hyp Ref Expression
1 dfdisjALTV5 DisjRxdomRydomRx=yxRyR=RelR
2 1 simplbi DisjRxdomRydomRx=yxRyR=
3 rsp2 xdomRydomRx=yxRyR=xdomRydomRx=yxRyR=
4 2 3 syl DisjRxdomRydomRx=yxRyR=
5 eceq1 x=yxR=yR
6 5 a1d x=yAxRAyRxR=yR
7 elin AxRyRAxRAyR
8 nel02 xRyR=¬AxRyR
9 8 pm2.21d xRyR=AxRyRxR=yR
10 7 9 biimtrrid xRyR=AxRAyRxR=yR
11 6 10 jaoi x=yxRyR=AxRAyRxR=yR
12 4 11 syl6 DisjRxdomRydomRAxRAyRxR=yR