| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dpmul.a |  |-  A e. NN0 | 
						
							| 2 |  | dpmul.b |  |-  B e. NN0 | 
						
							| 3 |  | dpmul.c |  |-  C e. NN0 | 
						
							| 4 |  | dpmul.d |  |-  D e. NN0 | 
						
							| 5 |  | dpmul.e |  |-  E e. NN0 | 
						
							| 6 |  | dpmul.g |  |-  G e. NN0 | 
						
							| 7 |  | dpmul.j |  |-  J e. NN0 | 
						
							| 8 |  | dpmul.k |  |-  K e. NN0 | 
						
							| 9 |  | dpmul.1 |  |-  ( A x. C ) = F | 
						
							| 10 |  | dpmul.2 |  |-  ( A x. D ) = M | 
						
							| 11 |  | dpmul.3 |  |-  ( B x. C ) = L | 
						
							| 12 |  | dpmul.4 |  |-  ( B x. D ) = ; E K | 
						
							| 13 |  | dpmul.5 |  |-  ( ( L + M ) + E ) = ; G J | 
						
							| 14 |  | dpmul.6 |  |-  ( F + G ) = I | 
						
							| 15 | 1 2 | deccl |  |-  ; A B e. NN0 | 
						
							| 16 |  | eqid |  |-  ; C D = ; C D | 
						
							| 17 | 1 4 | nn0mulcli |  |-  ( A x. D ) e. NN0 | 
						
							| 18 | 10 17 | eqeltrri |  |-  M e. NN0 | 
						
							| 19 | 18 5 | nn0addcli |  |-  ( M + E ) e. NN0 | 
						
							| 20 |  | eqid |  |-  ; A B = ; A B | 
						
							| 21 | 3 1 2 20 9 11 | decmul1 |  |-  ( ; A B x. C ) = ; F L | 
						
							| 22 | 21 | oveq1i |  |-  ( ( ; A B x. C ) + ( M + E ) ) = ( ; F L + ( M + E ) ) | 
						
							| 23 |  | dfdec10 |  |-  ; F L = ( ( ; 1 0 x. F ) + L ) | 
						
							| 24 | 23 | oveq1i |  |-  ( ; F L + ( M + E ) ) = ( ( ( ; 1 0 x. F ) + L ) + ( M + E ) ) | 
						
							| 25 |  | 10nn0 |  |-  ; 1 0 e. NN0 | 
						
							| 26 | 25 | nn0cni |  |-  ; 1 0 e. CC | 
						
							| 27 | 1 3 | nn0mulcli |  |-  ( A x. C ) e. NN0 | 
						
							| 28 | 9 27 | eqeltrri |  |-  F e. NN0 | 
						
							| 29 | 28 | nn0cni |  |-  F e. CC | 
						
							| 30 | 26 29 | mulcli |  |-  ( ; 1 0 x. F ) e. CC | 
						
							| 31 | 2 3 | nn0mulcli |  |-  ( B x. C ) e. NN0 | 
						
							| 32 | 11 31 | eqeltrri |  |-  L e. NN0 | 
						
							| 33 | 32 | nn0cni |  |-  L e. CC | 
						
							| 34 | 19 | nn0cni |  |-  ( M + E ) e. CC | 
						
							| 35 | 30 33 34 | addassi |  |-  ( ( ( ; 1 0 x. F ) + L ) + ( M + E ) ) = ( ( ; 1 0 x. F ) + ( L + ( M + E ) ) ) | 
						
							| 36 | 18 | nn0cni |  |-  M e. CC | 
						
							| 37 | 5 | nn0cni |  |-  E e. CC | 
						
							| 38 | 33 36 37 | addassi |  |-  ( ( L + M ) + E ) = ( L + ( M + E ) ) | 
						
							| 39 |  | dfdec10 |  |-  ; G J = ( ( ; 1 0 x. G ) + J ) | 
						
							| 40 | 13 38 39 | 3eqtr3ri |  |-  ( ( ; 1 0 x. G ) + J ) = ( L + ( M + E ) ) | 
						
							| 41 | 40 | oveq2i |  |-  ( ( ; 1 0 x. F ) + ( ( ; 1 0 x. G ) + J ) ) = ( ( ; 1 0 x. F ) + ( L + ( M + E ) ) ) | 
						
							| 42 |  | dfdec10 |  |-  ; I J = ( ( ; 1 0 x. I ) + J ) | 
						
							| 43 | 6 | nn0cni |  |-  G e. CC | 
						
							| 44 | 26 29 43 | adddii |  |-  ( ; 1 0 x. ( F + G ) ) = ( ( ; 1 0 x. F ) + ( ; 1 0 x. G ) ) | 
						
							| 45 | 14 | oveq2i |  |-  ( ; 1 0 x. ( F + G ) ) = ( ; 1 0 x. I ) | 
						
							| 46 | 44 45 | eqtr3i |  |-  ( ( ; 1 0 x. F ) + ( ; 1 0 x. G ) ) = ( ; 1 0 x. I ) | 
						
							| 47 | 46 | oveq1i |  |-  ( ( ( ; 1 0 x. F ) + ( ; 1 0 x. G ) ) + J ) = ( ( ; 1 0 x. I ) + J ) | 
						
							| 48 | 26 43 | mulcli |  |-  ( ; 1 0 x. G ) e. CC | 
						
							| 49 | 7 | nn0cni |  |-  J e. CC | 
						
							| 50 | 30 48 49 | addassi |  |-  ( ( ( ; 1 0 x. F ) + ( ; 1 0 x. G ) ) + J ) = ( ( ; 1 0 x. F ) + ( ( ; 1 0 x. G ) + J ) ) | 
						
							| 51 | 42 47 50 | 3eqtr2ri |  |-  ( ( ; 1 0 x. F ) + ( ( ; 1 0 x. G ) + J ) ) = ; I J | 
						
							| 52 | 35 41 51 | 3eqtr2i |  |-  ( ( ( ; 1 0 x. F ) + L ) + ( M + E ) ) = ; I J | 
						
							| 53 | 22 24 52 | 3eqtri |  |-  ( ( ; A B x. C ) + ( M + E ) ) = ; I J | 
						
							| 54 | 10 | oveq1i |  |-  ( ( A x. D ) + E ) = ( M + E ) | 
						
							| 55 | 4 1 2 20 8 5 54 12 | decmul1c |  |-  ( ; A B x. D ) = ; ( M + E ) K | 
						
							| 56 | 15 3 4 16 8 19 53 55 | decmul2c |  |-  ( ; A B x. ; C D ) = ; ; I J K | 
						
							| 57 | 2 | nn0rei |  |-  B e. RR | 
						
							| 58 |  | dpcl |  |-  ( ( A e. NN0 /\ B e. RR ) -> ( A . B ) e. RR ) | 
						
							| 59 | 1 57 58 | mp2an |  |-  ( A . B ) e. RR | 
						
							| 60 | 59 | recni |  |-  ( A . B ) e. CC | 
						
							| 61 | 4 | nn0rei |  |-  D e. RR | 
						
							| 62 |  | dpcl |  |-  ( ( C e. NN0 /\ D e. RR ) -> ( C . D ) e. RR ) | 
						
							| 63 | 3 61 62 | mp2an |  |-  ( C . D ) e. RR | 
						
							| 64 | 63 | recni |  |-  ( C . D ) e. CC | 
						
							| 65 | 60 64 26 26 | mul4i |  |-  ( ( ( A . B ) x. ( C . D ) ) x. ( ; 1 0 x. ; 1 0 ) ) = ( ( ( A . B ) x. ; 1 0 ) x. ( ( C . D ) x. ; 1 0 ) ) | 
						
							| 66 | 25 | dec0u |  |-  ( ; 1 0 x. ; 1 0 ) = ; ; 1 0 0 | 
						
							| 67 | 66 | oveq2i |  |-  ( ( ( A . B ) x. ( C . D ) ) x. ( ; 1 0 x. ; 1 0 ) ) = ( ( ( A . B ) x. ( C . D ) ) x. ; ; 1 0 0 ) | 
						
							| 68 | 1 57 | dpmul10 |  |-  ( ( A . B ) x. ; 1 0 ) = ; A B | 
						
							| 69 | 3 61 | dpmul10 |  |-  ( ( C . D ) x. ; 1 0 ) = ; C D | 
						
							| 70 | 68 69 | oveq12i |  |-  ( ( ( A . B ) x. ; 1 0 ) x. ( ( C . D ) x. ; 1 0 ) ) = ( ; A B x. ; C D ) | 
						
							| 71 | 65 67 70 | 3eqtr3i |  |-  ( ( ( A . B ) x. ( C . D ) ) x. ; ; 1 0 0 ) = ( ; A B x. ; C D ) | 
						
							| 72 | 28 6 | nn0addcli |  |-  ( F + G ) e. NN0 | 
						
							| 73 | 14 72 | eqeltrri |  |-  I e. NN0 | 
						
							| 74 | 8 | nn0rei |  |-  K e. RR | 
						
							| 75 | 73 7 74 | dpmul100 |  |-  ( ( I . _ J K ) x. ; ; 1 0 0 ) = ; ; I J K | 
						
							| 76 | 56 71 75 | 3eqtr4i |  |-  ( ( ( A . B ) x. ( C . D ) ) x. ; ; 1 0 0 ) = ( ( I . _ J K ) x. ; ; 1 0 0 ) | 
						
							| 77 | 60 64 | mulcli |  |-  ( ( A . B ) x. ( C . D ) ) e. CC | 
						
							| 78 | 7 | nn0rei |  |-  J e. RR | 
						
							| 79 |  | dp2cl |  |-  ( ( J e. RR /\ K e. RR ) -> _ J K e. RR ) | 
						
							| 80 | 78 74 79 | mp2an |  |-  _ J K e. RR | 
						
							| 81 |  | dpcl |  |-  ( ( I e. NN0 /\ _ J K e. RR ) -> ( I . _ J K ) e. RR ) | 
						
							| 82 | 73 80 81 | mp2an |  |-  ( I . _ J K ) e. RR | 
						
							| 83 | 82 | recni |  |-  ( I . _ J K ) e. CC | 
						
							| 84 |  | 10nn |  |-  ; 1 0 e. NN | 
						
							| 85 | 84 | decnncl2 |  |-  ; ; 1 0 0 e. NN | 
						
							| 86 | 85 | nncni |  |-  ; ; 1 0 0 e. CC | 
						
							| 87 | 85 | nnne0i |  |-  ; ; 1 0 0 =/= 0 | 
						
							| 88 | 86 87 | pm3.2i |  |-  ( ; ; 1 0 0 e. CC /\ ; ; 1 0 0 =/= 0 ) | 
						
							| 89 |  | mulcan2 |  |-  ( ( ( ( A . B ) x. ( C . D ) ) e. CC /\ ( I . _ J K ) e. CC /\ ( ; ; 1 0 0 e. CC /\ ; ; 1 0 0 =/= 0 ) ) -> ( ( ( ( A . B ) x. ( C . D ) ) x. ; ; 1 0 0 ) = ( ( I . _ J K ) x. ; ; 1 0 0 ) <-> ( ( A . B ) x. ( C . D ) ) = ( I . _ J K ) ) ) | 
						
							| 90 | 77 83 88 89 | mp3an |  |-  ( ( ( ( A . B ) x. ( C . D ) ) x. ; ; 1 0 0 ) = ( ( I . _ J K ) x. ; ; 1 0 0 ) <-> ( ( A . B ) x. ( C . D ) ) = ( I . _ J K ) ) | 
						
							| 91 | 76 90 | mpbi |  |-  ( ( A . B ) x. ( C . D ) ) = ( I . _ J K ) |