Step |
Hyp |
Ref |
Expression |
1 |
|
dssmapclsntr.x |
|- X = U. J |
2 |
|
dssmapclsntr.k |
|- K = ( cls ` J ) |
3 |
|
dssmapclsntr.i |
|- I = ( int ` J ) |
4 |
|
dssmapclsntr.o |
|- O = ( b e. _V |-> ( f e. ( ~P b ^m ~P b ) |-> ( s e. ~P b |-> ( b \ ( f ` ( b \ s ) ) ) ) ) ) |
5 |
|
dssmapclsntr.d |
|- D = ( O ` X ) |
6 |
1 2 3 4 5
|
dssmapntrcls |
|- ( J e. Top -> I = ( D ` K ) ) |
7 |
6
|
eqcomd |
|- ( J e. Top -> ( D ` K ) = I ) |
8 |
1
|
topopn |
|- ( J e. Top -> X e. J ) |
9 |
4 5 8
|
dssmapf1od |
|- ( J e. Top -> D : ( ~P X ^m ~P X ) -1-1-onto-> ( ~P X ^m ~P X ) ) |
10 |
1 2
|
clselmap |
|- ( J e. Top -> K e. ( ~P X ^m ~P X ) ) |
11 |
|
f1ocnvfv |
|- ( ( D : ( ~P X ^m ~P X ) -1-1-onto-> ( ~P X ^m ~P X ) /\ K e. ( ~P X ^m ~P X ) ) -> ( ( D ` K ) = I -> ( `' D ` I ) = K ) ) |
12 |
9 10 11
|
syl2anc |
|- ( J e. Top -> ( ( D ` K ) = I -> ( `' D ` I ) = K ) ) |
13 |
7 12
|
mpd |
|- ( J e. Top -> ( `' D ` I ) = K ) |
14 |
4 5 8
|
dssmapnvod |
|- ( J e. Top -> `' D = D ) |
15 |
14
|
fveq1d |
|- ( J e. Top -> ( `' D ` I ) = ( D ` I ) ) |
16 |
13 15
|
eqtr3d |
|- ( J e. Top -> K = ( D ` I ) ) |