Step |
Hyp |
Ref |
Expression |
1 |
|
dssmapclsntr.x |
⊢ 𝑋 = ∪ 𝐽 |
2 |
|
dssmapclsntr.k |
⊢ 𝐾 = ( cls ‘ 𝐽 ) |
3 |
|
dssmapclsntr.i |
⊢ 𝐼 = ( int ‘ 𝐽 ) |
4 |
|
dssmapclsntr.o |
⊢ 𝑂 = ( 𝑏 ∈ V ↦ ( 𝑓 ∈ ( 𝒫 𝑏 ↑m 𝒫 𝑏 ) ↦ ( 𝑠 ∈ 𝒫 𝑏 ↦ ( 𝑏 ∖ ( 𝑓 ‘ ( 𝑏 ∖ 𝑠 ) ) ) ) ) ) |
5 |
|
dssmapclsntr.d |
⊢ 𝐷 = ( 𝑂 ‘ 𝑋 ) |
6 |
1 2 3 4 5
|
dssmapntrcls |
⊢ ( 𝐽 ∈ Top → 𝐼 = ( 𝐷 ‘ 𝐾 ) ) |
7 |
6
|
eqcomd |
⊢ ( 𝐽 ∈ Top → ( 𝐷 ‘ 𝐾 ) = 𝐼 ) |
8 |
1
|
topopn |
⊢ ( 𝐽 ∈ Top → 𝑋 ∈ 𝐽 ) |
9 |
4 5 8
|
dssmapf1od |
⊢ ( 𝐽 ∈ Top → 𝐷 : ( 𝒫 𝑋 ↑m 𝒫 𝑋 ) –1-1-onto→ ( 𝒫 𝑋 ↑m 𝒫 𝑋 ) ) |
10 |
1 2
|
clselmap |
⊢ ( 𝐽 ∈ Top → 𝐾 ∈ ( 𝒫 𝑋 ↑m 𝒫 𝑋 ) ) |
11 |
|
f1ocnvfv |
⊢ ( ( 𝐷 : ( 𝒫 𝑋 ↑m 𝒫 𝑋 ) –1-1-onto→ ( 𝒫 𝑋 ↑m 𝒫 𝑋 ) ∧ 𝐾 ∈ ( 𝒫 𝑋 ↑m 𝒫 𝑋 ) ) → ( ( 𝐷 ‘ 𝐾 ) = 𝐼 → ( ◡ 𝐷 ‘ 𝐼 ) = 𝐾 ) ) |
12 |
9 10 11
|
syl2anc |
⊢ ( 𝐽 ∈ Top → ( ( 𝐷 ‘ 𝐾 ) = 𝐼 → ( ◡ 𝐷 ‘ 𝐼 ) = 𝐾 ) ) |
13 |
7 12
|
mpd |
⊢ ( 𝐽 ∈ Top → ( ◡ 𝐷 ‘ 𝐼 ) = 𝐾 ) |
14 |
4 5 8
|
dssmapnvod |
⊢ ( 𝐽 ∈ Top → ◡ 𝐷 = 𝐷 ) |
15 |
14
|
fveq1d |
⊢ ( 𝐽 ∈ Top → ( ◡ 𝐷 ‘ 𝐼 ) = ( 𝐷 ‘ 𝐼 ) ) |
16 |
13 15
|
eqtr3d |
⊢ ( 𝐽 ∈ Top → 𝐾 = ( 𝐷 ‘ 𝐼 ) ) |