Step |
Hyp |
Ref |
Expression |
1 |
|
dssmapclsntr.x |
⊢ 𝑋 = ∪ 𝐽 |
2 |
|
dssmapclsntr.k |
⊢ 𝐾 = ( cls ‘ 𝐽 ) |
3 |
|
dssmapclsntr.i |
⊢ 𝐼 = ( int ‘ 𝐽 ) |
4 |
|
dssmapclsntr.o |
⊢ 𝑂 = ( 𝑏 ∈ V ↦ ( 𝑓 ∈ ( 𝒫 𝑏 ↑m 𝒫 𝑏 ) ↦ ( 𝑠 ∈ 𝒫 𝑏 ↦ ( 𝑏 ∖ ( 𝑓 ‘ ( 𝑏 ∖ 𝑠 ) ) ) ) ) ) |
5 |
|
dssmapclsntr.d |
⊢ 𝐷 = ( 𝑂 ‘ 𝑋 ) |
6 |
|
vpwex |
⊢ 𝒫 𝑡 ∈ V |
7 |
6
|
inex2 |
⊢ ( 𝐽 ∩ 𝒫 𝑡 ) ∈ V |
8 |
7
|
uniex |
⊢ ∪ ( 𝐽 ∩ 𝒫 𝑡 ) ∈ V |
9 |
8
|
rgenw |
⊢ ∀ 𝑡 ∈ 𝒫 𝑋 ∪ ( 𝐽 ∩ 𝒫 𝑡 ) ∈ V |
10 |
|
nfcv |
⊢ Ⅎ 𝑡 𝒫 𝑋 |
11 |
10
|
fnmptf |
⊢ ( ∀ 𝑡 ∈ 𝒫 𝑋 ∪ ( 𝐽 ∩ 𝒫 𝑡 ) ∈ V → ( 𝑡 ∈ 𝒫 𝑋 ↦ ∪ ( 𝐽 ∩ 𝒫 𝑡 ) ) Fn 𝒫 𝑋 ) |
12 |
9 11
|
mp1i |
⊢ ( 𝐽 ∈ Top → ( 𝑡 ∈ 𝒫 𝑋 ↦ ∪ ( 𝐽 ∩ 𝒫 𝑡 ) ) Fn 𝒫 𝑋 ) |
13 |
1
|
ntrfval |
⊢ ( 𝐽 ∈ Top → ( int ‘ 𝐽 ) = ( 𝑡 ∈ 𝒫 𝑋 ↦ ∪ ( 𝐽 ∩ 𝒫 𝑡 ) ) ) |
14 |
3 13
|
syl5eq |
⊢ ( 𝐽 ∈ Top → 𝐼 = ( 𝑡 ∈ 𝒫 𝑋 ↦ ∪ ( 𝐽 ∩ 𝒫 𝑡 ) ) ) |
15 |
14
|
fneq1d |
⊢ ( 𝐽 ∈ Top → ( 𝐼 Fn 𝒫 𝑋 ↔ ( 𝑡 ∈ 𝒫 𝑋 ↦ ∪ ( 𝐽 ∩ 𝒫 𝑡 ) ) Fn 𝒫 𝑋 ) ) |
16 |
12 15
|
mpbird |
⊢ ( 𝐽 ∈ Top → 𝐼 Fn 𝒫 𝑋 ) |
17 |
1
|
topopn |
⊢ ( 𝐽 ∈ Top → 𝑋 ∈ 𝐽 ) |
18 |
4 5 17
|
dssmapf1od |
⊢ ( 𝐽 ∈ Top → 𝐷 : ( 𝒫 𝑋 ↑m 𝒫 𝑋 ) –1-1-onto→ ( 𝒫 𝑋 ↑m 𝒫 𝑋 ) ) |
19 |
|
f1of |
⊢ ( 𝐷 : ( 𝒫 𝑋 ↑m 𝒫 𝑋 ) –1-1-onto→ ( 𝒫 𝑋 ↑m 𝒫 𝑋 ) → 𝐷 : ( 𝒫 𝑋 ↑m 𝒫 𝑋 ) ⟶ ( 𝒫 𝑋 ↑m 𝒫 𝑋 ) ) |
20 |
18 19
|
syl |
⊢ ( 𝐽 ∈ Top → 𝐷 : ( 𝒫 𝑋 ↑m 𝒫 𝑋 ) ⟶ ( 𝒫 𝑋 ↑m 𝒫 𝑋 ) ) |
21 |
1 2
|
clselmap |
⊢ ( 𝐽 ∈ Top → 𝐾 ∈ ( 𝒫 𝑋 ↑m 𝒫 𝑋 ) ) |
22 |
20 21
|
ffvelrnd |
⊢ ( 𝐽 ∈ Top → ( 𝐷 ‘ 𝐾 ) ∈ ( 𝒫 𝑋 ↑m 𝒫 𝑋 ) ) |
23 |
|
elmapfn |
⊢ ( ( 𝐷 ‘ 𝐾 ) ∈ ( 𝒫 𝑋 ↑m 𝒫 𝑋 ) → ( 𝐷 ‘ 𝐾 ) Fn 𝒫 𝑋 ) |
24 |
22 23
|
syl |
⊢ ( 𝐽 ∈ Top → ( 𝐷 ‘ 𝐾 ) Fn 𝒫 𝑋 ) |
25 |
|
elpwi |
⊢ ( 𝑡 ∈ 𝒫 𝑋 → 𝑡 ⊆ 𝑋 ) |
26 |
1
|
ntrval2 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑡 ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ 𝑡 ) = ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝑡 ) ) ) ) |
27 |
25 26
|
sylan2 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑡 ∈ 𝒫 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ 𝑡 ) = ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝑡 ) ) ) ) |
28 |
3
|
fveq1i |
⊢ ( 𝐼 ‘ 𝑡 ) = ( ( int ‘ 𝐽 ) ‘ 𝑡 ) |
29 |
2
|
fveq1i |
⊢ ( 𝐾 ‘ ( 𝑋 ∖ 𝑡 ) ) = ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝑡 ) ) |
30 |
29
|
difeq2i |
⊢ ( 𝑋 ∖ ( 𝐾 ‘ ( 𝑋 ∖ 𝑡 ) ) ) = ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝑡 ) ) ) |
31 |
27 28 30
|
3eqtr4g |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑡 ∈ 𝒫 𝑋 ) → ( 𝐼 ‘ 𝑡 ) = ( 𝑋 ∖ ( 𝐾 ‘ ( 𝑋 ∖ 𝑡 ) ) ) ) |
32 |
17
|
adantr |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑡 ∈ 𝒫 𝑋 ) → 𝑋 ∈ 𝐽 ) |
33 |
21
|
adantr |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑡 ∈ 𝒫 𝑋 ) → 𝐾 ∈ ( 𝒫 𝑋 ↑m 𝒫 𝑋 ) ) |
34 |
|
eqid |
⊢ ( 𝐷 ‘ 𝐾 ) = ( 𝐷 ‘ 𝐾 ) |
35 |
|
simpr |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑡 ∈ 𝒫 𝑋 ) → 𝑡 ∈ 𝒫 𝑋 ) |
36 |
|
eqid |
⊢ ( ( 𝐷 ‘ 𝐾 ) ‘ 𝑡 ) = ( ( 𝐷 ‘ 𝐾 ) ‘ 𝑡 ) |
37 |
4 5 32 33 34 35 36
|
dssmapfv3d |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑡 ∈ 𝒫 𝑋 ) → ( ( 𝐷 ‘ 𝐾 ) ‘ 𝑡 ) = ( 𝑋 ∖ ( 𝐾 ‘ ( 𝑋 ∖ 𝑡 ) ) ) ) |
38 |
31 37
|
eqtr4d |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑡 ∈ 𝒫 𝑋 ) → ( 𝐼 ‘ 𝑡 ) = ( ( 𝐷 ‘ 𝐾 ) ‘ 𝑡 ) ) |
39 |
16 24 38
|
eqfnfvd |
⊢ ( 𝐽 ∈ Top → 𝐼 = ( 𝐷 ‘ 𝐾 ) ) |