Metamath Proof Explorer


Theorem dssmapntrcls

Description: The interior and closure operators on a topology are duals of each other. See also kur14lem2 . (Contributed by RP, 21-Apr-2021)

Ref Expression
Hypotheses dssmapclsntr.x X = J
dssmapclsntr.k K = cls J
dssmapclsntr.i I = int J
dssmapclsntr.o O = b V f 𝒫 b 𝒫 b s 𝒫 b b f b s
dssmapclsntr.d D = O X
Assertion dssmapntrcls J Top I = D K

Proof

Step Hyp Ref Expression
1 dssmapclsntr.x X = J
2 dssmapclsntr.k K = cls J
3 dssmapclsntr.i I = int J
4 dssmapclsntr.o O = b V f 𝒫 b 𝒫 b s 𝒫 b b f b s
5 dssmapclsntr.d D = O X
6 vpwex 𝒫 t V
7 6 inex2 J 𝒫 t V
8 7 uniex J 𝒫 t V
9 8 rgenw t 𝒫 X J 𝒫 t V
10 nfcv _ t 𝒫 X
11 10 fnmptf t 𝒫 X J 𝒫 t V t 𝒫 X J 𝒫 t Fn 𝒫 X
12 9 11 mp1i J Top t 𝒫 X J 𝒫 t Fn 𝒫 X
13 1 ntrfval J Top int J = t 𝒫 X J 𝒫 t
14 3 13 syl5eq J Top I = t 𝒫 X J 𝒫 t
15 14 fneq1d J Top I Fn 𝒫 X t 𝒫 X J 𝒫 t Fn 𝒫 X
16 12 15 mpbird J Top I Fn 𝒫 X
17 1 topopn J Top X J
18 4 5 17 dssmapf1od J Top D : 𝒫 X 𝒫 X 1-1 onto 𝒫 X 𝒫 X
19 f1of D : 𝒫 X 𝒫 X 1-1 onto 𝒫 X 𝒫 X D : 𝒫 X 𝒫 X 𝒫 X 𝒫 X
20 18 19 syl J Top D : 𝒫 X 𝒫 X 𝒫 X 𝒫 X
21 1 2 clselmap J Top K 𝒫 X 𝒫 X
22 20 21 ffvelrnd J Top D K 𝒫 X 𝒫 X
23 elmapfn D K 𝒫 X 𝒫 X D K Fn 𝒫 X
24 22 23 syl J Top D K Fn 𝒫 X
25 elpwi t 𝒫 X t X
26 1 ntrval2 J Top t X int J t = X cls J X t
27 25 26 sylan2 J Top t 𝒫 X int J t = X cls J X t
28 3 fveq1i I t = int J t
29 2 fveq1i K X t = cls J X t
30 29 difeq2i X K X t = X cls J X t
31 27 28 30 3eqtr4g J Top t 𝒫 X I t = X K X t
32 17 adantr J Top t 𝒫 X X J
33 21 adantr J Top t 𝒫 X K 𝒫 X 𝒫 X
34 eqid D K = D K
35 simpr J Top t 𝒫 X t 𝒫 X
36 eqid D K t = D K t
37 4 5 32 33 34 35 36 dssmapfv3d J Top t 𝒫 X D K t = X K X t
38 31 37 eqtr4d J Top t 𝒫 X I t = D K t
39 16 24 38 eqfnfvd J Top I = D K