| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dssmapclsntr.x |
|- X = U. J |
| 2 |
|
dssmapclsntr.k |
|- K = ( cls ` J ) |
| 3 |
|
dssmapclsntr.i |
|- I = ( int ` J ) |
| 4 |
|
dssmapclsntr.o |
|- O = ( b e. _V |-> ( f e. ( ~P b ^m ~P b ) |-> ( s e. ~P b |-> ( b \ ( f ` ( b \ s ) ) ) ) ) ) |
| 5 |
|
dssmapclsntr.d |
|- D = ( O ` X ) |
| 6 |
|
vpwex |
|- ~P t e. _V |
| 7 |
6
|
inex2 |
|- ( J i^i ~P t ) e. _V |
| 8 |
7
|
uniex |
|- U. ( J i^i ~P t ) e. _V |
| 9 |
8
|
rgenw |
|- A. t e. ~P X U. ( J i^i ~P t ) e. _V |
| 10 |
|
nfcv |
|- F/_ t ~P X |
| 11 |
10
|
fnmptf |
|- ( A. t e. ~P X U. ( J i^i ~P t ) e. _V -> ( t e. ~P X |-> U. ( J i^i ~P t ) ) Fn ~P X ) |
| 12 |
9 11
|
mp1i |
|- ( J e. Top -> ( t e. ~P X |-> U. ( J i^i ~P t ) ) Fn ~P X ) |
| 13 |
1
|
ntrfval |
|- ( J e. Top -> ( int ` J ) = ( t e. ~P X |-> U. ( J i^i ~P t ) ) ) |
| 14 |
3 13
|
eqtrid |
|- ( J e. Top -> I = ( t e. ~P X |-> U. ( J i^i ~P t ) ) ) |
| 15 |
14
|
fneq1d |
|- ( J e. Top -> ( I Fn ~P X <-> ( t e. ~P X |-> U. ( J i^i ~P t ) ) Fn ~P X ) ) |
| 16 |
12 15
|
mpbird |
|- ( J e. Top -> I Fn ~P X ) |
| 17 |
1
|
topopn |
|- ( J e. Top -> X e. J ) |
| 18 |
4 5 17
|
dssmapf1od |
|- ( J e. Top -> D : ( ~P X ^m ~P X ) -1-1-onto-> ( ~P X ^m ~P X ) ) |
| 19 |
|
f1of |
|- ( D : ( ~P X ^m ~P X ) -1-1-onto-> ( ~P X ^m ~P X ) -> D : ( ~P X ^m ~P X ) --> ( ~P X ^m ~P X ) ) |
| 20 |
18 19
|
syl |
|- ( J e. Top -> D : ( ~P X ^m ~P X ) --> ( ~P X ^m ~P X ) ) |
| 21 |
1 2
|
clselmap |
|- ( J e. Top -> K e. ( ~P X ^m ~P X ) ) |
| 22 |
20 21
|
ffvelcdmd |
|- ( J e. Top -> ( D ` K ) e. ( ~P X ^m ~P X ) ) |
| 23 |
|
elmapfn |
|- ( ( D ` K ) e. ( ~P X ^m ~P X ) -> ( D ` K ) Fn ~P X ) |
| 24 |
22 23
|
syl |
|- ( J e. Top -> ( D ` K ) Fn ~P X ) |
| 25 |
|
elpwi |
|- ( t e. ~P X -> t C_ X ) |
| 26 |
1
|
ntrval2 |
|- ( ( J e. Top /\ t C_ X ) -> ( ( int ` J ) ` t ) = ( X \ ( ( cls ` J ) ` ( X \ t ) ) ) ) |
| 27 |
25 26
|
sylan2 |
|- ( ( J e. Top /\ t e. ~P X ) -> ( ( int ` J ) ` t ) = ( X \ ( ( cls ` J ) ` ( X \ t ) ) ) ) |
| 28 |
3
|
fveq1i |
|- ( I ` t ) = ( ( int ` J ) ` t ) |
| 29 |
2
|
fveq1i |
|- ( K ` ( X \ t ) ) = ( ( cls ` J ) ` ( X \ t ) ) |
| 30 |
29
|
difeq2i |
|- ( X \ ( K ` ( X \ t ) ) ) = ( X \ ( ( cls ` J ) ` ( X \ t ) ) ) |
| 31 |
27 28 30
|
3eqtr4g |
|- ( ( J e. Top /\ t e. ~P X ) -> ( I ` t ) = ( X \ ( K ` ( X \ t ) ) ) ) |
| 32 |
17
|
adantr |
|- ( ( J e. Top /\ t e. ~P X ) -> X e. J ) |
| 33 |
21
|
adantr |
|- ( ( J e. Top /\ t e. ~P X ) -> K e. ( ~P X ^m ~P X ) ) |
| 34 |
|
eqid |
|- ( D ` K ) = ( D ` K ) |
| 35 |
|
simpr |
|- ( ( J e. Top /\ t e. ~P X ) -> t e. ~P X ) |
| 36 |
|
eqid |
|- ( ( D ` K ) ` t ) = ( ( D ` K ) ` t ) |
| 37 |
4 5 32 33 34 35 36
|
dssmapfv3d |
|- ( ( J e. Top /\ t e. ~P X ) -> ( ( D ` K ) ` t ) = ( X \ ( K ` ( X \ t ) ) ) ) |
| 38 |
31 37
|
eqtr4d |
|- ( ( J e. Top /\ t e. ~P X ) -> ( I ` t ) = ( ( D ` K ) ` t ) ) |
| 39 |
16 24 38
|
eqfnfvd |
|- ( J e. Top -> I = ( D ` K ) ) |