| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvdsadd2b |
|- ( ( A e. ZZ /\ B e. ZZ /\ ( C e. ZZ /\ A || C ) ) -> ( A || B <-> A || ( C + B ) ) ) |
| 2 |
1
|
a1d |
|- ( ( A e. ZZ /\ B e. ZZ /\ ( C e. ZZ /\ A || C ) ) -> ( B e. RR -> ( A || B <-> A || ( C + B ) ) ) ) |
| 3 |
2
|
3exp |
|- ( A e. ZZ -> ( B e. ZZ -> ( ( C e. ZZ /\ A || C ) -> ( B e. RR -> ( A || B <-> A || ( C + B ) ) ) ) ) ) |
| 4 |
3
|
com24 |
|- ( A e. ZZ -> ( B e. RR -> ( ( C e. ZZ /\ A || C ) -> ( B e. ZZ -> ( A || B <-> A || ( C + B ) ) ) ) ) ) |
| 5 |
4
|
3imp |
|- ( ( A e. ZZ /\ B e. RR /\ ( C e. ZZ /\ A || C ) ) -> ( B e. ZZ -> ( A || B <-> A || ( C + B ) ) ) ) |
| 6 |
5
|
com12 |
|- ( B e. ZZ -> ( ( A e. ZZ /\ B e. RR /\ ( C e. ZZ /\ A || C ) ) -> ( A || B <-> A || ( C + B ) ) ) ) |
| 7 |
|
dvdszrcl |
|- ( A || B -> ( A e. ZZ /\ B e. ZZ ) ) |
| 8 |
|
pm2.24 |
|- ( B e. ZZ -> ( -. B e. ZZ -> A || ( C + B ) ) ) |
| 9 |
7 8
|
simpl2im |
|- ( A || B -> ( -. B e. ZZ -> A || ( C + B ) ) ) |
| 10 |
9
|
com12 |
|- ( -. B e. ZZ -> ( A || B -> A || ( C + B ) ) ) |
| 11 |
10
|
adantr |
|- ( ( -. B e. ZZ /\ ( A e. ZZ /\ B e. RR /\ ( C e. ZZ /\ A || C ) ) ) -> ( A || B -> A || ( C + B ) ) ) |
| 12 |
|
dvdszrcl |
|- ( A || ( C + B ) -> ( A e. ZZ /\ ( C + B ) e. ZZ ) ) |
| 13 |
|
zcn |
|- ( C e. ZZ -> C e. CC ) |
| 14 |
13
|
adantr |
|- ( ( C e. ZZ /\ ( B e. RR /\ -. B e. ZZ ) ) -> C e. CC ) |
| 15 |
|
recn |
|- ( B e. RR -> B e. CC ) |
| 16 |
15
|
ad2antrl |
|- ( ( C e. ZZ /\ ( B e. RR /\ -. B e. ZZ ) ) -> B e. CC ) |
| 17 |
14 16
|
addcomd |
|- ( ( C e. ZZ /\ ( B e. RR /\ -. B e. ZZ ) ) -> ( C + B ) = ( B + C ) ) |
| 18 |
|
eldif |
|- ( B e. ( RR \ ZZ ) <-> ( B e. RR /\ -. B e. ZZ ) ) |
| 19 |
|
nzadd |
|- ( ( B e. ( RR \ ZZ ) /\ C e. ZZ ) -> ( B + C ) e. ( RR \ ZZ ) ) |
| 20 |
19
|
eldifbd |
|- ( ( B e. ( RR \ ZZ ) /\ C e. ZZ ) -> -. ( B + C ) e. ZZ ) |
| 21 |
20
|
expcom |
|- ( C e. ZZ -> ( B e. ( RR \ ZZ ) -> -. ( B + C ) e. ZZ ) ) |
| 22 |
18 21
|
biimtrrid |
|- ( C e. ZZ -> ( ( B e. RR /\ -. B e. ZZ ) -> -. ( B + C ) e. ZZ ) ) |
| 23 |
22
|
imp |
|- ( ( C e. ZZ /\ ( B e. RR /\ -. B e. ZZ ) ) -> -. ( B + C ) e. ZZ ) |
| 24 |
17 23
|
eqneltrd |
|- ( ( C e. ZZ /\ ( B e. RR /\ -. B e. ZZ ) ) -> -. ( C + B ) e. ZZ ) |
| 25 |
24
|
exp32 |
|- ( C e. ZZ -> ( B e. RR -> ( -. B e. ZZ -> -. ( C + B ) e. ZZ ) ) ) |
| 26 |
|
pm2.21 |
|- ( -. ( C + B ) e. ZZ -> ( ( C + B ) e. ZZ -> A || B ) ) |
| 27 |
25 26
|
syl8 |
|- ( C e. ZZ -> ( B e. RR -> ( -. B e. ZZ -> ( ( C + B ) e. ZZ -> A || B ) ) ) ) |
| 28 |
27
|
adantr |
|- ( ( C e. ZZ /\ A || C ) -> ( B e. RR -> ( -. B e. ZZ -> ( ( C + B ) e. ZZ -> A || B ) ) ) ) |
| 29 |
28
|
com12 |
|- ( B e. RR -> ( ( C e. ZZ /\ A || C ) -> ( -. B e. ZZ -> ( ( C + B ) e. ZZ -> A || B ) ) ) ) |
| 30 |
29
|
a1i |
|- ( A e. ZZ -> ( B e. RR -> ( ( C e. ZZ /\ A || C ) -> ( -. B e. ZZ -> ( ( C + B ) e. ZZ -> A || B ) ) ) ) ) |
| 31 |
30
|
3imp |
|- ( ( A e. ZZ /\ B e. RR /\ ( C e. ZZ /\ A || C ) ) -> ( -. B e. ZZ -> ( ( C + B ) e. ZZ -> A || B ) ) ) |
| 32 |
31
|
impcom |
|- ( ( -. B e. ZZ /\ ( A e. ZZ /\ B e. RR /\ ( C e. ZZ /\ A || C ) ) ) -> ( ( C + B ) e. ZZ -> A || B ) ) |
| 33 |
32
|
com12 |
|- ( ( C + B ) e. ZZ -> ( ( -. B e. ZZ /\ ( A e. ZZ /\ B e. RR /\ ( C e. ZZ /\ A || C ) ) ) -> A || B ) ) |
| 34 |
12 33
|
simpl2im |
|- ( A || ( C + B ) -> ( ( -. B e. ZZ /\ ( A e. ZZ /\ B e. RR /\ ( C e. ZZ /\ A || C ) ) ) -> A || B ) ) |
| 35 |
34
|
com12 |
|- ( ( -. B e. ZZ /\ ( A e. ZZ /\ B e. RR /\ ( C e. ZZ /\ A || C ) ) ) -> ( A || ( C + B ) -> A || B ) ) |
| 36 |
11 35
|
impbid |
|- ( ( -. B e. ZZ /\ ( A e. ZZ /\ B e. RR /\ ( C e. ZZ /\ A || C ) ) ) -> ( A || B <-> A || ( C + B ) ) ) |
| 37 |
36
|
ex |
|- ( -. B e. ZZ -> ( ( A e. ZZ /\ B e. RR /\ ( C e. ZZ /\ A || C ) ) -> ( A || B <-> A || ( C + B ) ) ) ) |
| 38 |
6 37
|
pm2.61i |
|- ( ( A e. ZZ /\ B e. RR /\ ( C e. ZZ /\ A || C ) ) -> ( A || B <-> A || ( C + B ) ) ) |