| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvdsr0.b |
|- B = ( Base ` R ) |
| 2 |
|
dvdsr0.d |
|- .|| = ( ||r ` R ) |
| 3 |
|
dvdsr0.z |
|- .0. = ( 0g ` R ) |
| 4 |
1 3
|
ring0cl |
|- ( R e. Ring -> .0. e. B ) |
| 5 |
4
|
adantr |
|- ( ( R e. Ring /\ X e. B ) -> .0. e. B ) |
| 6 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 7 |
1 2 6
|
dvdsr2 |
|- ( .0. e. B -> ( .0. .|| X <-> E. x e. B ( x ( .r ` R ) .0. ) = X ) ) |
| 8 |
5 7
|
syl |
|- ( ( R e. Ring /\ X e. B ) -> ( .0. .|| X <-> E. x e. B ( x ( .r ` R ) .0. ) = X ) ) |
| 9 |
1 6 3
|
ringrz |
|- ( ( R e. Ring /\ x e. B ) -> ( x ( .r ` R ) .0. ) = .0. ) |
| 10 |
9
|
eqeq1d |
|- ( ( R e. Ring /\ x e. B ) -> ( ( x ( .r ` R ) .0. ) = X <-> .0. = X ) ) |
| 11 |
|
eqcom |
|- ( .0. = X <-> X = .0. ) |
| 12 |
10 11
|
bitrdi |
|- ( ( R e. Ring /\ x e. B ) -> ( ( x ( .r ` R ) .0. ) = X <-> X = .0. ) ) |
| 13 |
12
|
rexbidva |
|- ( R e. Ring -> ( E. x e. B ( x ( .r ` R ) .0. ) = X <-> E. x e. B X = .0. ) ) |
| 14 |
|
ringgrp |
|- ( R e. Ring -> R e. Grp ) |
| 15 |
1
|
grpbn0 |
|- ( R e. Grp -> B =/= (/) ) |
| 16 |
|
r19.9rzv |
|- ( B =/= (/) -> ( X = .0. <-> E. x e. B X = .0. ) ) |
| 17 |
14 15 16
|
3syl |
|- ( R e. Ring -> ( X = .0. <-> E. x e. B X = .0. ) ) |
| 18 |
13 17
|
bitr4d |
|- ( R e. Ring -> ( E. x e. B ( x ( .r ` R ) .0. ) = X <-> X = .0. ) ) |
| 19 |
18
|
adantr |
|- ( ( R e. Ring /\ X e. B ) -> ( E. x e. B ( x ( .r ` R ) .0. ) = X <-> X = .0. ) ) |
| 20 |
8 19
|
bitrd |
|- ( ( R e. Ring /\ X e. B ) -> ( .0. .|| X <-> X = .0. ) ) |