| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eigre.1 |
|- A e. ~H |
| 2 |
|
eigre.2 |
|- B e. CC |
| 3 |
|
oveq2 |
|- ( ( T ` A ) = ( B .h A ) -> ( A .ih ( T ` A ) ) = ( A .ih ( B .h A ) ) ) |
| 4 |
|
his5 |
|- ( ( B e. CC /\ A e. ~H /\ A e. ~H ) -> ( A .ih ( B .h A ) ) = ( ( * ` B ) x. ( A .ih A ) ) ) |
| 5 |
2 1 1 4
|
mp3an |
|- ( A .ih ( B .h A ) ) = ( ( * ` B ) x. ( A .ih A ) ) |
| 6 |
3 5
|
eqtrdi |
|- ( ( T ` A ) = ( B .h A ) -> ( A .ih ( T ` A ) ) = ( ( * ` B ) x. ( A .ih A ) ) ) |
| 7 |
|
oveq1 |
|- ( ( T ` A ) = ( B .h A ) -> ( ( T ` A ) .ih A ) = ( ( B .h A ) .ih A ) ) |
| 8 |
|
ax-his3 |
|- ( ( B e. CC /\ A e. ~H /\ A e. ~H ) -> ( ( B .h A ) .ih A ) = ( B x. ( A .ih A ) ) ) |
| 9 |
2 1 1 8
|
mp3an |
|- ( ( B .h A ) .ih A ) = ( B x. ( A .ih A ) ) |
| 10 |
7 9
|
eqtrdi |
|- ( ( T ` A ) = ( B .h A ) -> ( ( T ` A ) .ih A ) = ( B x. ( A .ih A ) ) ) |
| 11 |
6 10
|
eqeq12d |
|- ( ( T ` A ) = ( B .h A ) -> ( ( A .ih ( T ` A ) ) = ( ( T ` A ) .ih A ) <-> ( ( * ` B ) x. ( A .ih A ) ) = ( B x. ( A .ih A ) ) ) ) |
| 12 |
1 1
|
hicli |
|- ( A .ih A ) e. CC |
| 13 |
|
ax-his4 |
|- ( ( A e. ~H /\ A =/= 0h ) -> 0 < ( A .ih A ) ) |
| 14 |
1 13
|
mpan |
|- ( A =/= 0h -> 0 < ( A .ih A ) ) |
| 15 |
14
|
gt0ne0d |
|- ( A =/= 0h -> ( A .ih A ) =/= 0 ) |
| 16 |
2
|
cjcli |
|- ( * ` B ) e. CC |
| 17 |
|
mulcan2 |
|- ( ( ( * ` B ) e. CC /\ B e. CC /\ ( ( A .ih A ) e. CC /\ ( A .ih A ) =/= 0 ) ) -> ( ( ( * ` B ) x. ( A .ih A ) ) = ( B x. ( A .ih A ) ) <-> ( * ` B ) = B ) ) |
| 18 |
16 2 17
|
mp3an12 |
|- ( ( ( A .ih A ) e. CC /\ ( A .ih A ) =/= 0 ) -> ( ( ( * ` B ) x. ( A .ih A ) ) = ( B x. ( A .ih A ) ) <-> ( * ` B ) = B ) ) |
| 19 |
12 15 18
|
sylancr |
|- ( A =/= 0h -> ( ( ( * ` B ) x. ( A .ih A ) ) = ( B x. ( A .ih A ) ) <-> ( * ` B ) = B ) ) |
| 20 |
11 19
|
sylan9bb |
|- ( ( ( T ` A ) = ( B .h A ) /\ A =/= 0h ) -> ( ( A .ih ( T ` A ) ) = ( ( T ` A ) .ih A ) <-> ( * ` B ) = B ) ) |
| 21 |
2
|
cjrebi |
|- ( B e. RR <-> ( * ` B ) = B ) |
| 22 |
20 21
|
bitr4di |
|- ( ( ( T ` A ) = ( B .h A ) /\ A =/= 0h ) -> ( ( A .ih ( T ` A ) ) = ( ( T ` A ) .ih A ) <-> B e. RR ) ) |